On Conformal Radii of Non-Overlapping Simply Connected Domains

Yaroslav Zabolotnii1, a*, Iryna Denega2, b

1, 2 Department of complex analysis and potential theory, Institute of mathematics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

a*yaroslavzabolotnii@gmail.com, biradenega@gmail.com (*corresponding author)

Keywords: conformal mappings, conformal radius of the domain, non-overlapping domains, simply connected domains, Green’s function, system of points, separating transformation, quadratic differential.

Abstract. The paper deals with the following open problem stated by V. N. Dubinin. Let $a_0 = 0$, $|a_1| = \ldots = |a_n| = 1$, $a_k \in B_k \subset \mathbb{C}$, where B_0, \ldots, B_n are disjoint domains. For all values of the parameter $\gamma \in (0, n]$ find the exact upper bound for $r^\gamma(B_0, 0) \prod_{k=1}^{n} r(B_k, a_k)$, where $r(B_k, a_k)$ is the conformal radius of B_k with respect to a_k. For $\gamma = 1$ and $n \geq 2$ the problem was solved by V. N. Dubinin. In the paper the problem is solved for $\gamma \in (0, \sqrt{n}]$ and $n \geq 2$ for simply connected domains.

Subject Classification Numbers: 30C75.

Introduction

In geometric function theory of complex variable extremal problems on non-overlapping domains are well-known classic direction (see, for example, [1–26]). A lot of such problems are reduced to determination of the maximum of product of inner radii on the system of non-overlapping domains satisfying a certain conditions. Paper of M. A. Lavrent’ev “On the theory of conformal mappings” [10] was initial impetus for such direction, in which, was first proposed and solved the problem of maximizing the product conformal radii of two non-overlapping simply connected domains. Namely, he proved the following assertion [10]: let a_1 and a_2 be some fixed points in the complex plane \mathbb{C}, B_k, $a_k \in B_k$, $k = 1, 2$ be any non-overlapping domains in \mathbb{C}. Then for functions $w = f_k(0)$, $k = 1, 2$, which regular in the circle $|z| < 1$ and univalently mapping it to the domain B_k such that $f_k(0) = a_k$, we have inequality

$$|f_1'(0)| \cdot |f_2'(0)| \leq |a_1 - a_2|^2.$$

Moreover, for domains B_k, which have classical Green’s function equality in this inequality is attended if and only if domains B_1, B_2 are limited by circle $\frac{z - a_1}{z - a_2} = C$, where C is an arbitrary positive constant. Lavrent’ev used this result to some aerodynamics problems.

It follows from the proof of this theorem, as a corollary, the well-known statement of Koebe-Bieberbach in theory of univalent functions. Based on these elementary estimates are obtained a number of new estimates for functions realizing a conformal mapping of a disc onto domains with certain special properties. Estimates of this type are fundamental to solving some metric problems arising when considering the correspondence of boundaries under a conformal mapping. Also, on the basis of the results concerning various extremal properties of conformal mappings, the problem of the representability of functions of a complex variable by a uniformly convergent series of polynomials is solved. Themes connected with the study of problems on non-overlapping domains was developed in papers [1–26].

Until 1974 a system of points a_k, $k = 1, n$, of the complex plane were fixed. In 1968 P. M. Tamrazov put forward the idea, that we can provide to the points a_k, $k = 1, n$, some freedom. In 1975, in accordance with this idea, G. P. Bakhtina first set and solved a number of extremal problems in classroom mutually non-overlapping domains with so-called free poles in her dissertation. The considering problem in the paper is the problem of this kind.
Let \(\mathbb{N} \) and \(\mathbb{R} \) be the sets of natural and real numbers, respectively, let \(\mathbb{C} \) be the complex plane, and let \(\overline{\mathbb{C}} = \mathbb{C} \cup \{ \infty \} \) be its one-point compactification, \(\mathbb{R}^+ = (0, \infty) \).

Let \(r(B, a) = |f'(0)| \) be the conformal radius of the simply connected domain \(B \subset \overline{\mathbb{C}} \) relative to a point \(a \in B \), where \(w = f(z) \) is a univalent conformal mapping of the unit circle onto the domain \(B \subset \overline{\mathbb{C}}, a = f(0) \) (see, for example, \([1, 10, 11, 12, 13, 14]\)).

Further we consider the following system of points \(A_n := \{ a_k \in \mathbb{C}, k = 1, n \}, n \in \mathbb{N}, n \geq 2 \), satisfying the conditions \(|a_k| \in \mathbb{R}^+, k = 1, n \) and

\[
0 = \arg a_1 < \arg a_2 < \cdots < \arg a_n < 2\pi.
\]

Define the numbers \(\alpha_k, k = 1, n \), as follows

\[
\alpha_1 := \frac{1}{\pi} (\arg a_2 - \arg a_1), \quad \alpha_2 := \frac{1}{\pi} (\arg a_3 - \arg a_2), \ldots, \quad \alpha_n := \frac{1}{\pi} (2\pi - \arg a_n).
\]

And let \(\alpha_0 = \max_k \alpha_k \).

Consider one open an extremal problem which was formulated in \([1]\) in the list of unsolved problems and then repeated in monograph \([14]\).

Problem. Consider the product

\[
I_n(\gamma) = r^\gamma (B_0, 0) \prod_{k=1}^n r(B_k, a_k),
\]

where \(B_0, B_1, \ldots, B_n \) \((n \geq 2)\) are pairwise disjoint domains in \(\overline{\mathbb{C}}, a_0 = 0, |a_k| = 1, k = 1, n \) and \(0 < \gamma \leq n \). Show that it attains its maximum at a configuration of domains \(B_k \) and points \(a_k \) possessing rotational \(n \)-symmetry.

Presently, this task is not completely solved, its solutions for certain particular cases are only known. In \([1]\) the problem was solved for any \(n \geq 2 \) and \(\gamma = 1 \). In \([15]\) – for any \(\gamma > 1 \) but starting with some unknown number \(n \) in advance. The next step in the study of this problem was finding possible solutions for type of restrictions \(1 < \gamma \leq n^a \) where \(0 < a < 1 \). In \([16]\) the problem was solved for \(n \geq 8 \) and \(1 < \gamma \leq \sqrt{n} \), in \([17]\) – for \(n \geq 12 \) and \(1 < \gamma \leq n^{0.45} \).

In paper \([18]\) this problem was solved for any natural \(n \geq 5 \) and \(0 < \gamma \leq n \) but for condition \(\alpha_0 \leq \frac{2}{\sqrt{\gamma}} \). So we will consider only configuration of domains \(D_k \) and points \(d_k \) for which \(\alpha_0 > \frac{2}{\sqrt{\gamma}}. \)

Results of this paper are addendum to the theorem in \([18]\).

Results and Proofs.

For simply connected domains we obtained the following result.

Theorem 1. Let \(n \in \mathbb{N}, n \geq 2 \) and \(\gamma \in (1, \sqrt{n}] \). Then for any different points \(a_k, k = 1, n \), which lie on the unit circle \(|w| = 1 \) and any system of non-overlapping simply connected domains \(B_k, a_k \in B_k \subset \overline{\mathbb{C}}, k = 0, n, a_0 = 0 \), the following inequality holds

\[
r^\gamma(B_0, 0) \prod_{k=1}^n r(B_k, a_k) \leq \left(\frac{4}{n} \right)^n \left(\frac{\gamma}{n^2} \right)^{\gamma \pi} \left(\frac{1 - \sqrt{n}}{1 + \sqrt{n}} \right)^{2\sqrt{n}}.
\]

Equality in (1) is attained, when \(a_k \) and \(B_k, k = 0, n \), are, respectively, the poles and circular domains of the quadratic differential

\[
Q(w)dw^2 = -\frac{(n^2 - \gamma)w^n + \gamma}{w^2(w^n - 1)^2} dw^2.
\]

Proof of the theorem 1. Note, that the cases \(n = 2 \) and \(n = 3 \) were considered in the paper \([19]\), the case \(n = 4 \) was considered in \([20]\) for a more general case of multiply connected domains. Therefore, we prove theorem 1 for \(n \geq 5 \).
It is important for us to know numerical value of $I_n(\gamma)$ on the system of circular domains D_k and the system of poles d_k, $k = 0, n$ of the quadratic differential (2). Let

$$I_n^0(\gamma) = r^\gamma(D_0, d_0) \cdot \prod_{k=1}^n r(D_k, d_k),$$

where $\{d_k\}_{k=0}^n$ and $\{D_k\}_{k=0}^n$ are, respectively, the poles and circular domains of the quadratic differential (2). Using theorem 5.2.3 [15] we have

$$I_n^0(\gamma) = \left(\frac{4}{n}\right)^n \frac{\left(\frac{4\gamma}{n^2}\right)^\pi}{(1 - \frac{\gamma}{n^2})} \frac{\left(1 - \frac{\sqrt{n}}{n}\right)^{2\sqrt{n}}}{\left(1 + \frac{\sqrt{n}}{n}\right)}.$$

The following assertion is known.

Lemma 1. [19] Let $n \in \mathbb{N}$, $n \geq 2$, $\gamma > 0$. And let $\{B_0, B_1, B_2, \ldots, B_n\}$ be the system of pairwise non-overlapping simply connected domains such that $0 \in B_0 \subset \mathbb{C}$, $a_k \in B_k \subset \mathbb{C}$, $|a_k| = 1$, $k = 1, n$ and $r^\gamma(B_0, 0) \prod_{k=1}^n r(B_k, a_k) > I_n^0(\gamma)$. Then the following inequality holds

$$r(B_0, 0) \leq n^{-\frac{n^2}{2\gamma(n-\gamma)}} I_n^0(\gamma)^{\frac{2}{n-\gamma}}.$$

Note, that in [21] the problem was solved for $n \geq 4$ and $0 < \gamma \leq n$ but for condition $\alpha_0 \leq \frac{2}{\sqrt{\gamma}}$ (see also, [22, 25]). Thus taking Lemma 1 into account we consider the case when

$$r(B_0, 0) \leq n^{-\frac{n^2}{2\gamma(n-\gamma)}} I_n^0(\gamma)^{\frac{2}{n-\gamma}}$$

and $\alpha_0 > \frac{2}{\sqrt{\gamma}}$.

Proof that

$$r^\gamma(B_0, a_0) \cdot \prod_{k=1}^n r(B_k, a_k) \leq \left(\frac{4}{n}\right)^n \frac{\left(\frac{4\gamma}{n^2}\right)^\pi}{(1 - \frac{\gamma}{n^2})} \frac{\left(1 - \frac{\sqrt{n}}{n}\right)^{2\sqrt{n}}}{\left(1 + \frac{\sqrt{n}}{n}\right)} < 1.$$

Clearly,

$$r^\gamma(B_0, a_0) \leq n^{-\frac{n^2}{2\gamma(n-\gamma)}} I_n^0(\gamma)^{\frac{\gamma}{n-\gamma}}.$$

Taking theorem 5.2.3 [15] into account we obtain

$$\prod_{k=1}^n r(B_k, a_k) \leq 2^n \prod_{k=1}^n \alpha_k \leq 2^n \alpha_0 \left(\frac{2 - \alpha_0}{n - 1}\right)^{n-1}.$$

Thus, we have the following inequality

$$\frac{r^\gamma(B_0, a_0) \cdot \prod_{k=1}^n r(B_k, a_k)}{I_n^0(\gamma)} \leq \frac{4^n}{(n-1)^{n-1} \sqrt{\gamma}} \cdot \left(1 - \frac{1}{\sqrt{\gamma}}\right)^{n-1} := G_n(\gamma).$$

Note, to prove the theorem 1 for some n and γ, it suffices to show that the inequality $G_n(\gamma) < 1$ holds. So, we show that for $n \geq 5$ the inequality $G_n(\sqrt{n}) < 1$ holds.
\[G_n(\sqrt{n}) = \frac{4^n}{(n-1)^{n-1}n^\frac{1}{4}} \cdot \left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1} \cdot \frac{1}{n\sqrt{n-\sqrt{n}}} \cdot \frac{1}{4(n-\sqrt{n})} = \]
\[
= \frac{4^n}{(n-1)^{n-1}n^\frac{1}{4}} \cdot \left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1} \cdot \frac{1}{n\sqrt{n-\sqrt{n}}} \cdot \frac{n \cdot 4}{4} \cdot \frac{n^\frac{3}{4}}{4(n-\sqrt{n})} \times \\
\times \left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1} \frac{n^{\frac{3}{4} + 1}}{4(n-\sqrt{n})} \cdot \frac{1}{n\sqrt{n-\sqrt{n}}} \cdot \frac{n \cdot 4}{4} \cdot \frac{n^\frac{3}{4}}{4(n-\sqrt{n})} = \]
\[
\times \left(1 + \frac{1}{n-1}\right)^{n-1} \left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1}
\times \left(1 + \frac{1}{n^\frac{1}{4}}\right)^{n-1} \left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1}
\]

Obviously, for \(n \geq 5 \) we have
\[
\left(1 + \frac{1}{n-1}\right)^{n-1} < e,
\]
\[
\left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1} < 1.
\]

Expression \(\left(1 + \frac{1}{n^\frac{1}{4}}\right)^{\frac{2n \cdot 3}{4(n-\sqrt{n})}} \) decreases with increasing \(n \), so for \(n \geq 5 \) we have
\[
\left(1 + \frac{1}{n^\frac{1}{4}}\right)^{\frac{2n \cdot 3}{4(n-\sqrt{n})}} < 30.
\]

Expression \(n^{\frac{2n + 3 \sqrt{n} + 3}{4(n-\sqrt{n})}} \left(1 - \frac{1}{n^\frac{1}{4}}\right)^{n-1} \) also decreases with increasing \(n \), and we obtain that for \(n \geq 5 \) it does not exceed 0.01. Summing obtained estimates we have
\[
G_n(\sqrt{n}) < e \cdot 30 \cdot 0.01 < 1. \tag{5}
\]

Thus, for \(\gamma = \sqrt{n} \) the theorem 1 is proved. Further consider the validity of the theorem for \(1 < \gamma < \sqrt{n} \). The following equality holds
\[
(f_n^0)'' = f_n^0 \left(\frac{1}{n} \ln \left(\frac{4^\gamma}{n^2 - \gamma}\right) + \frac{1}{\sqrt{n}} \ln \left(\frac{n - \sqrt{n}}{n + \sqrt{n}}\right)\right).
\]

It is not difficult to obtain the following lemma.

Lemma 2. For \(n \geq 5 \) and \(1 < \gamma < n \) the function \(G_n(\gamma) \) monotonically increases.

Proof of the lemma 2. Using the logarithmic derivative, we investigate the monotonicity of the function \(G_n(\gamma) \).

\[
\ln (G_n(\gamma)) = \ln \frac{4^n}{(n-1)^{n-1}n^\frac{1}{4}} - \frac{1}{2} \ln \gamma + (n - 1) \ln \left(1 - \frac{1}{\sqrt{n}}\right) - \\
\frac{n\gamma}{2(n-\gamma)} \ln n - \frac{n}{n - \gamma} \ln f_n^0(\gamma).
\]
Respectively,
\[(\ln (G_n(\gamma)))' = -\frac{1}{2\gamma} + \frac{n - 1}{2\gamma(\sqrt{n} - 1)} - \frac{n^2 \ln n}{2(n - \gamma)^2} - \frac{n \ln I_n^0(\gamma)}{(n - \gamma)^2} - \frac{n}{n - \gamma} \frac{(I_n^0(\gamma))'}{I_n^0(\gamma)}.\]

It is easily seen that
\[-\frac{1}{2\gamma} + \frac{n - 1}{2\gamma(\sqrt{n} - 1)} = \frac{n - \sqrt{n}}{2\gamma(\sqrt{n} - 1)} > 0.\] (6)

From Lemma 1 we obtain
\[-\frac{n^2 \ln n}{2(n - \gamma)^2} - \frac{n \ln I_n^0(\gamma)}{(n - \gamma)^2} - \frac{n}{n - \gamma} (\ln I_n^0(\gamma))' = -\frac{n}{2(n - \gamma)^2} \times\]
\[\times \left(n \ln n + 2 \ln I_n^0(\gamma) + \frac{2(n - \gamma)}{n} \ln \left(\frac{4\gamma}{n^2 - \gamma} \right) + \frac{2(n - \gamma)}{\sqrt{n}} \ln \left(\frac{n - \sqrt{n}}{n + \sqrt{n}} \right) \right).\]

Note, that
\[n \ln n + 2 \ln I_n^0(\gamma) < 0\]
and
\[\frac{2(n - \gamma)}{n} \ln \left(\frac{4\gamma}{n^2 - \gamma} \right) + \frac{2(n - \gamma)}{\sqrt{n}} \ln \left(\frac{n - \sqrt{n}}{n + \sqrt{n}} \right) < 0\]
for \(n\) and \(\gamma\) which satisfy the conditions of the lemma. Thus,
\[-\frac{n^2 \ln n}{2(n - \gamma)^2} - \frac{n \ln I_n^0(\gamma)}{(n - \gamma)^2} - \frac{n}{n - \gamma} (\ln I_n^0(\gamma))' > 0.\] (7)

Taking (6) and (7) into consideration we have the following inequality
\[(\ln (G_n(\gamma)))' > 0.\]

Lemma 2 is proved.

Further using Lemma 2 and inequality (5), we obtain the statement of the theorem 1 for \(\alpha_0 > \frac{2}{\sqrt{n}}\).

Finally, using results of the papers [18, 21, 22] we also obtain that the theorem 1 is valid for \(\alpha_0 \leq \frac{2}{\sqrt{n}}\).

Thus, theorem 1 is proved.

Note that for some number \(n\) we can get stronger results. In the following theorem we take \(\gamma_n\) as the root of the equation \(G_n(\gamma) = 1\) with an accuracy to 0.1.

Theorem 2. Let \(n = 5, 10\), \(\gamma_5 = 3.2, \gamma_6 = 3.8, \gamma_7 = 4.2, \gamma_8 = 4.7, \gamma_9 = 5.1, \gamma_{10} = 5.4\). Then for any \(\gamma \in (1, \gamma_n]\) inequality (1) holds, where domains \(B_k\) and points \(a_k\) are the same as in Theorem 1.

Proof of the theorem 2. In order to prove the theorem we use the following inequality
\[G_n(\gamma) := \frac{4^{n-1} - 1}{n^n \sqrt{\pi} I_n^0(\gamma)_{\gamma_n}} \leq 1,\] (8)
where the value \(I_n^0(\gamma)\) is determined by the formula (3). Substituting in (8) specific values of \(n = 5, 10\) we obtain
\[G_5(3.2) \approx 0.9612 < 1, \quad G_6(3.8) \approx 0.9962 < 1,\]
\[G_7(4.2) \approx 0.8879 < 1, \quad G_8(4.7) \approx 0.9624 < 1,\]
\[G_9(5.1) \approx 0.9731 < 1, \quad G_{10}(5.4) \approx 0.9001 < 1.\]

Further, using Lemma 2 we have statement of theorem 2. Thus theorem 2 is proved.
Acknowledgement

The authors wish to thank referees of the paper for their helpful remarks.

References

L.V. Kovalev, On the problem of extremal decomposition with free poles on a circle, Dalnevos-tochnyi Mat. Sb. 2 (1996) 96–98. (in Russian)

