Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJARM > IJARM Volume 10 > Integrals Involving Aleph Function and Wright’s...
< Back to Volume

Integrals Involving Aleph Function and Wright’s Generalized Hypergeometric Function

Full Text PDF


The aim of this paper is to establish certain integrals involving product of the Aleph function with Srivastava’s polynomials and Fox-Wright’s Generalized Hypergeometric function. Being unified and general in nature, these integrals yield a number of known and new results as special cases. For the sake of illustration, four corollaries are also recorded here as special case of our main results.


International Journal of Advanced Research in Mathematics (Volume 10)
D.L. Suthar et al., "Integrals Involving Aleph Function and Wright’s Generalized Hypergeometric Function", International Journal of Advanced Research in Mathematics, Vol. 10, pp. 20-26, 2017
Online since:
September 2017

[1] L.K. Arora, U.K. Saha, Integrals involving Hypergeometric function and H-function, J. Indian Acad. Math. 32(1) (2010) 243-249.

[2] A. Bhargava, A. Srivastava, R. Mukherjee, Some integrals involving I-function and Wright's generalized Hypergeometric function, Casp. J. of App. Math., Ecology and Economics 3(1) (2015) 3-11.

[3] A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-function: theory and applications, Springer, New York, (2010).

[4] U.K. Saha, L.K. Arora, B.K. Dutta, Integrals involving I-function, Gen. Math. Notes 6(1) (2011) 1-14.

[5] V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect. A. 51 (1982) 366-375.

[6] R.K. Saxena, T.K. Pog´any, Mathieu-type series for the ℵ-function occurring in Fokker-Planck equation, Eur. J. Pure Appl. Math. 3(6) (2010) 980-988.

[7] R.K. Saxena, T.K. Pog´any, On fractional integration formulae for Aleph functions, Appl. Math. Comput. 218(3) (2011) 985-990.

[8] R.K. Saxena, J. Ram, D. Kumar, Generalized fractional differentiation of the Aleph-Function associated with the Appell function F3, Acta Ciencia Indica. 38(4) (2012) 781-792.

[9] R.K. Saxena, J. Ram, D. Kumar, Generalized fractional differentiation for Saigo operators involving Aleph functions, J. Indian Acad. Math. 34(1) (2012) 109-115.

[10] R.K. Saxena, J. Ram, D.L. Suthar, Integral formulas for the H-function generalized fractional calculus II, South East Asian J. Math. and Math. Sc. 5(2) (2007) 23-31.

[11] H.M. Srivastava, On an extension of the Mittag-Leffler function, Yokohama Math.J. 16 (1968) 77-88.

[12] N. S¨udland, B. Baumann, T.F. Nannenmacher, Open problem: Who knows about the Alephfunction?, Appl. Anal. 1(4) (1998) 401-402.

[13] N. S¨udland, B. Baumann, T.F. Nannenmacher, Fractional driftless Fokker-Planck equation with power law diffusion coefficients, in: V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds. ), Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin, 2001, pp.513-525.


[14] D.L. Suthar, S. Agarwal, Marichev-Saigo-Maeda fractional integration operator associated with Srivastava's polynomial and Gauss hypergeometric functions, Konuralp J. Math. 5(1) (2016) 145-160.

[15] D.L. Suthar, R.K. Parmar, S.D. Purohit, Fractional calculus with complex order and generalized hypergeometric functions, Nonlinear Sci. Lett. A . 8(2) (2017) 156-161.

[16] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. 46 (1946) 389-408.

Show More Hide
Cited By:
This article has no citations.