Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IJARM > IJARM Volume 10 > Generalized Composition Operators on Weighted...
< Back to Volume

Generalized Composition Operators on Weighted Hilbert Spaces of Analytic Functions

Full Text PDF

Abstract:

Let φ be an analytic self-map of the open unit disk D and g be an analytic function on D. The generalized composition operator induced by the maps g and φ is defined by the integral operator I(g,φ)f(z) =∫0zf′(φ(ς ))g(ς ) . Given an admissible weight ω, the weighted Hilbert space Hω consists of all analytic functions f such that ∥f2Hω = |f(0)|2+∫D|f′(z)|2ω(z)dA(z) is finite. In this paper, we characterize the boundedness and compactness of the generalized composition operators on the space Hω using the ω-Carleson measures. Moreover, we give a lower bound for the essential norm of these operators.

Info:

Periodical:
International Journal of Advanced Research in Mathematics (Volume 10)
Pages:
1-13
Citation:
W. Al-Rawashdeh, "Generalized Composition Operators on Weighted Hilbert Spaces of Analytic Functions", International Journal of Advanced Research in Mathematics, Vol. 10, pp. 1-13, 2017
Online since:
September 2017
Export:
Distribution:
References:

[1] J. Bonet, P. Doma´nski, M. Lindstr¨om, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42(2) (1999) 139-148.

DOI: https://doi.org/10.4153/cmb-1999-016-x

[2] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. Math. 76 (1962) 547-559.

DOI: https://doi.org/10.2307/1970375

[3] Z. Cuckovi´c, R. Zhao, Weighted composition operators between different weighted Bergman spaces and different hardy spaces, Ill. J. Math. 51(2) (2007) 479-498.

[4] Z. Cuckovi´c, R. Zhao, Essential norm estimates of weighted composition operators between Bergman spaces on strongly pseudoconvex domains, Math. Proc. Cambridge Philos. Soc. 142(3) (2007) 525-533.

DOI: https://doi.org/10.1017/s0305004106009893

[5] Z. Cuckovi´c, R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. 70(2) (2004) 499-511.

[6] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC press, Boca Raton, (1995).

[7] N. Dunford, T. Schwartz, Linear operators, Part 1, Interscience, New York, (1967).

[8] P. Duren, A. Schuster, Bergman spaces, American Mathematical Society, (2004).

[9] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer-Verlag, New York, (2000).

[10] R.A. Hibschwailer, N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math. 35(3) (2005) 843-855.

DOI: https://doi.org/10.1216/rmjm/1181069709

[11] K. Kellay, P. Lef`evre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl. 386(2) (2012) 718-727.

DOI: https://doi.org/10.1016/j.jmaa.2011.08.033

[12] S. Li, S. Stevi´c , Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput. 217(7) (2010) 3144-3154.

DOI: https://doi.org/10.1016/j.amc.2010.08.047

[13] S. Li, S. Stevi´c , Products of integral-type operators and composition operators between Blochtype spaces, J. Math. Anal. Appl. 349(2) (2009) 596-610.

DOI: https://doi.org/10.1016/j.jmaa.2008.09.014

[14] S. Li, S. Stevi´c, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338(2) (2008) 1282-1295.

DOI: https://doi.org/10.1016/j.jmaa.2007.06.013

[15] S. Li, S. Stevi´c, Products of Volterra type operator and composition operator from H∞ and Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008) 40-52.

[16] S. Li, Volterra composition operators between weighted Bergman space and Block type spaces, J. Korean Math. Soc. 45(1) (2008) 229-248.

DOI: https://doi.org/10.4134/jkms.2008.45.1.229

[17] B.D. MacCluer, J.H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986) 878-906.

DOI: https://doi.org/10.4153/cjm-1986-043-4

[18] T. Mengestie, Generalized Volterra companion operators on Fock spaces, Potential Anal. 44(3) (2016) 579-599.

DOI: https://doi.org/10.1007/s11118-015-9520-3

[19] T. Mengestie, Schatten-class generalized Volterra companion integral operators, Banach J. Math. Anal. 10(2) (2016) 267-280.

DOI: https://doi.org/10.1215/17358787-3492743

[20] T. Mengestie, Product of Volterra type integral and composition operators on weighted Fock spaces, J. Geom. Anal. 24(2) (2014) 740-755.

DOI: https://doi.org/10.1007/s12220-012-9353-x

[21] T. Mengesties, Volterra type and weighted composition operators on weighted Fock spaces, Integr. Equ. Oper. Theory. 76(1) (2013) 81-94.

DOI: https://doi.org/10.1007/s00020-013-2050-8

[22] W. Al-Rawashdeh, Compact composition operators on weighted Hilbert spaces, J. Appl. Funct. Anal. 10 (2015) 101-108.

[23] J.H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, (1993).

[24] J.H. Shapiro, The essential norm of a composition operators, Annals of Mathematics. 125 (1987) 375-404.

[25] A.K. Sharma, Volterra composition operators between weighted Bergman-Nevanlinna and Bloch-type spaces, Demonstratio Math. 42(3) (2009) 607-618.

DOI: https://doi.org/10.1515/dema-2013-0179

[26] S. Stevi´c, A.K. Sharma, Generalized composition operators on weighted Hardy spaces, Appl. Math. Comput. 218(17) (2012) 8347-8352.

[27] S. Stevi´c, A.K. Sharma, Integral-type operators from Bloch-type spaces to QK spaces, Abstr. Appl. Anal. 2011 (2011) Article ID 698038.

[28] S. Stevi´c, A.K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 217(20) (2011) 8115-8125.

DOI: https://doi.org/10.1016/j.amc.2011.03.014

[29] K. Zhu, Operator theory in function spaces, American Mathematical Society, (2007).

[30] K. Zhu, Spaces of holomorphic functions in the unit ball, Springer-Verlag, New York, (2005).

[31] W. Yang, On an integral-type operator between Bloch-type spaces, Appl. Math. Comput. 215(3) (2009) 954-960.

DOI: https://doi.org/10.1016/j.amc.2009.06.016

[32] W. Yang, X. Meng, Generalized composition operators from F(p, q, s) spaces to Bloch-type spaces, Appl. Math. Comput. 217(6) (2010) 2513-2519.

DOI: https://doi.org/10.1016/j.amc.2010.07.063

[33] X. Zhu, Generalized composition operators and Volterra composition operators on Bloch spaces in the unit ball, Complex Var. Elliptic Equ. 54(2) (2009) 95-102.

DOI: https://doi.org/10.1080/17476930802669660

[34] X. Zhu, Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, Indian J. Math. 49(2) (2007) 139-149.

DOI: https://doi.org/10.7153/jca-10-03

[35] X. Zhu, Products of differentiation composition and multiplication from Bergman type spaces to Bers type spaces, Integral Transforms Spec. Funct. 18(3) (2007) 223-231.

DOI: https://doi.org/10.1080/10652460701210250

[36] E. Wolf, Volterra composition operators between weighted Bergman spaces and weighted Bloch type spaces, Collect. Math. 61(1) (2010) 57-63.

DOI: https://doi.org/10.1007/bf03191226
Show More Hide
Cited By:

[1] L. Perlich, "Dirichlet-to-Robin Operators via Composition Semigroups", Complex Analysis and Operator Theory, Vol. 13, p. 819, 2019

DOI: https://doi.org/10.1007/s11785-018-0806-5