A new theoretical analytical investigation for the exact solvability of non-relativistic quantum spectrum systems at low energy for modified inverse power potential (m.i.p.) is discussed by means Boopp’s shift method instead to solving deformed Schrödinger equation with star product, in the framework of both noncommutativite two dimensional real space and phase (NC: 2D-RSP), the exact corrections for lowest excitations are found straightforwardly for interactions in one-electron atoms, muonic, hadronic and Rydberg atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on the four infinitesimals parameters (*θ,χ*) and (*θ,σ*), which are induced by position-position and momentum-momentum noncommutativity, in addition to the discreet atomic quantum numbers (*j*=*l*±1/1, *s*=±1/2 and *m*) and we have also shown that, the old states are canceled and has been replaced by new degenerated 4(2*l*+1) sub-states.

Periodical:

International Frontier Science Letters (Volume 9)

Pages:

33-46

Citation:

A. Maireche, "A New Nonrelativistic Investigation for the Lowest Excitations States of Interactions in One-Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power Potential", International Frontier Science Letters, Vol. 9, pp. 33-46, 2016

Online since:

August 2016

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

[1] Shi-Hai Dong, Guo-Hua Sun, The Schrödinger equation with a Coulomb plus inverse-square potential in D dimensions, Physica Scripta. 70(2-3) (2004) 94-97.

[2] J.J. Pena, G. Ovando, J. Morales, D-dimensional Eckart+deformed Hylleraas potential: Bound state solutions, Journal of Physics: Conference Series. 574 (2015) 012089.

[3] L. Buragohain, S.A. S . Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. 4(1) (2010) 79-83.

[4] A. Niknam, A.A. Rajab, M. Solaimani, Solutions of D-dimensional Schrödinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method, J. Theor. App. Phys. 10(1) (2016).

[5] Sameer M. Ikhdair, Ramazan Sever, Exact solutions of the radial Schrödinger equation for some physical potentials, CEJP. 5(4) (2007) 516–527.

[6] M.M. Nieto, Hydrogen atom and relativistic pi-mesic atom in N-space dimension, Am. J. Phys. 47 (1979) 1067–1072.

[7] S. M. Ikhdair, R. Sever, Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential, J. Mol. Struc. -Theochem. 806(1) (2007) 155–158.

[8] A.S. Ahmed, L. Buragohain, Generation of new classes of exactly solvable potentials, Phys. Scr. 80 (2009) 1-6.

[9] S.K. Bose, Exact solution of non-relativistic Schrödinger equation for certain central physical potentials, Nouvo Cimento B. 113 (1996) 299- 328.

[10] G.P. Flesses, A. Watt, An exact solution of the Schrödinger equation for a multiterm potential, J. Phys. A: Math. Gen. 14 (19981) L315-L318.

[11] M. Ikhdair, R. Sever, Exact solution of the Klein–Gordon equation for the PT symmetri generalized Woods–Saxon potential by the Nikiforov–Uvarov method, Ann. Phys. (Leipzig). 16 (2007) 218–232.

[12] S.H. Dong, Schrödinger equation with the potential V(r) =r*−4+r*−3+r*−2+r*−1, Physica Scripta. 64(4) (2001) 273–276.

[13] S.H. Dong, Z.Q. Ma, Exact solutions to the Schrödinger equation for the potential V(r) =r*2+r*−4+r*−6 in two dimensions, Journal of Physics A. 31(49) (1998) 9855–9859.

[14] S.H. Dong, A new approach to the relativistic Schrödinger equation with central potential: Ansatz method, International Journal of Theoretical Physics. 40(2) (2001) 559–567.

[15] Ali Akder et al., A new Coulomb ring-shaped potential via generalized parametetric Nikivforov-Uvarov method, Journal of Theoretical and Applied Physics. 7 (2013) 17.

[16] Sameer M. Ikhdair, Ramazan Sever, Relativistic Two-Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields, Advances in High Energy Physics. (2013) Article ID 562959.

[17] Shi-Hai Dong, Guo-Hua San, Quantum Spectrum of Some Anharmonic Central Potentials: Wave Functions Ansatz, Foundations of Physics Letters. 16(4) (2003) 357-367.

[18] L. Buragohain, S. A. S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. 4(1) (2010) 79-83.

[19] S.M. Ikhdair, Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states, Journal of Modern Physics. 3(2) (2012) 170–179.

DOI: https://doi.org/10.4236/jmp.2012.32023[20] H. Hassanabadi et al., Exact solution Dirac equation for an energy-depended potential, Tur. Phys. J. Plus. 127 (2012) 120.

[21] H. Hassanabadi et al., Exact solutions of N-Dimensional Schrödinger equation for a potential containing coulomb and quadratic terms, International Journal of the Physical Sciences. 6(3) (2011) 583-586.

[22] D. Agboola, Complte Analytical Solutions of the Mie-Type Potentials in N-Dimensions, Acta Physica Polonica A. 120 (2011) 371-377.

[23] Dong, S et al., Exact solutions of the Schrödinger equation with inverse-power potential, Foundations of Physics Letters. 12(5) (1999) 465-474.

[24] E. Vogt, G.H. Wannier, Scattering of ions by polarization forces, Phys. Rev. 95 (1954) 1190-1198.

[25] Shi-Hai Dong, Schrödinger Equation with the Potential V(r) = Ar-4 + Br-3 + Cr-2 + Dr-1; Physica Scripta. 64 (2001) 273-276.

[26] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non-Commutative Two-dimensional Real Space, The African Rev. Phys. 9 (2014) 479-483.

[27] Abdelmadjid Maireche, Deformed Quantum Energy Spectra with Mixed Harmonic Potential for Nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7(2) (2015) 02003.

[28] Abdelmadjid Maireche, A Study of Schrödinger Equation with Inverse Sextic Potential in 2-dimensional Non-commutative Space, The African Rev. Phys. 9 (2014) 185-193.

[29] Abdelmadjid. Maireche, Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. 56 (2015) 1-9.

[30] Abdelmadjid Maireche, Atomic Spectrum for Schrödinger Equation with Rational Spherical Type Potential in Non-commutative Space and Phase, The African Review of Physics. 10 (2015) 373-381.

[31] Abdelmadjid Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of Non-commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 4 (2015) 060-072.

[32] Abdelmadjid. Maireche, New Exact Solution of the Bound States for the Potential Family V(r)=A/r2-B/r+Crk (k=0, -1, -2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics, International Letters of Chemistry, Physics and Astronomy. 58 (20145) 164-176.

[33] Abdelmadjid Maireche, A New Approach to the Non Relativistic Schrödinger equation for an Energy-Depended Potential in Both Noncommutative three Dimensional spaces and phases, International Letters of Chemistry, Physics and Astronomy. 60 (2015).

[34] Abdelmadjid Maireche, A Recent Study of Quantum Atomic Spectrum of the Lowest Excitations for Schrödinger Equation with Typical Rational Spherical Potential at Planck's and Nanoscales, J. Nano- Electron. Phys. 7(3) (2015) 02003.

[35] Abdelmadjid Maireche, Quantum Hamiltonian and Spectrum of Schrödinger Equation with companied Harmonic Oscillator Potential and its Inverse in three Dimensional Noncommutative Real Space and Phase, J. Nano- Electron. Phys. 7(4) (2015) 04021-1.

[36] Abdelmadjid Maireche, Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation, The African Rev. Phys. 10 (2015) 177-183.

[37] Abdelmadjid Maireche, New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank's Scales, J. Nano- Electron. Phys. 8(1) (2016) 01020.

[38] Abdelmadjid Maireche, The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quadratic Terms in Non-commutative Two Dimensional Real Spaces and Phases, J. Nano- Electron. Phys. 8(1) (2016) 01021.

DOI: https://doi.org/10.21272/jnep.8(1).01021[39] Abdelmadjid Maireche, A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries, J. Nano- Electron. Phys. 8(2) (2016) 02046.

[40] H. Hassanabadi, F. Hoseini, S. Zarrinkamar, A generalized interaction in noncommutative space: Both relativistic and nonrelativistic fields, Eur. J. Plus. 130(10) (2015) 1-7.

[41] Abdelmalek Boumali, Hassan Hassanabadi, The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field, Eur. J. Plus. 128(10) (2013) 1-13.

[42] A.E.F. Djemei, H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space, Commun. Theor. Phys. (Beijinig, China). 41 (2004) 837-844.

[43] Shaohong Cai, Tao Jing, Guangjie Guo, Rukun Zhang, Dirac Oscillator in Noncommutative Phase Space, International Journal of Theoretical Physics. 49(8) (2010) 1699-1705.

[44] Joohan Lee, Star Products and the Landau Problem, Journal of the Korean Physical Society, 47(4) (2005) 571-576.

[45] A. Jahan, Noncommutative harmonic oscillator at finite temperature: a path integral approach, Brazilian Journal of Physics. 37(4) (2007) 144-146.

[46] Anselme F. Dossa, Gabriel Y. H. Avossevou, Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields, Journal of Modern Physics. 4 (2013) 1400-1411.

[47] Yang, Zu-Hua et al., DKP Oscillator with spin-0 in Three dimensional Noncommutaive Phase-Space, Int. J. Theor. Phys. 49 (2010) 644-657.

[48] Y. Yuan e al., Spin ½ relativistic particle in a magnetic field in NC Ph, Chinese Physics C, 34(5) (2010) 543.

[49] Jumakari-Mamat; Sayipjamal Dulat, Hekim Mamatabdulla, Landau-like Atomic Proplem on a Non-commutative Phase Space, Int J Theor Phys. 55(6) (2016) 2913-2918.

[50] Behrouz Mirza et al., Relativistic Oscillators in a Noncommutative space in a Magnetic field, Commun. Theor. Phys. 55 (2011) 405-409.

[51] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, (1965).

Cited By:

[1] A. Maireche, "Effects of Two-Dimensional Noncommutative Theories on Bound States Schrödinger Diatomic Molecules under New Modified Kratzer-Type Interactions", International Letters of Chemistry, Physics and Astronomy, Vol. 76, p. 1, 2017

DOI: https://doi.org/10.18052/www.scipress.com/ILCPA.76.1[2] A. Maireche, "A Novel Exactly Theoretical Solvable of Bound States of the Dirac-Kratzer-Fues Problem with Spin and Pseudo-Spin Symmetry", International Frontier Science Letters, Vol. 10, p. 8, 2016

DOI: https://doi.org/10.18052/www.scipress.com/IFSL.10.8[3] A. Maireche, "Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Anharmonic Oscillator", Journal of Nanomedicine Research, Vol. 4, 2016

DOI: https://doi.org/10.15406/jnmr.2016.04.00097[4] O. Hegacy, "Model for End-Stage Liver Disease (Meld) Score, As a Prognostic Factor for Cirrhotic Patients, Undergoing Hepatectomy for Hepatocellular Carcinoma", Gastroenterology & Hepatology : Open Access, Vol. 2, 2015

DOI: https://doi.org/10.15406/ghoa.2015.02.00044[5] A. Maireche, "Nonrelativistic treatment of Hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative Quantum mechanics", International Journal of Geometric Methods in Modern Physics, 2020

DOI: https://doi.org/10.1142/S021988782050067X[6] A. Maireche, "Modified Unequal Mixture Scalar Vector Hulthén–Yukawa Potentials Model as a Quark–Antiquark Interaction and Neutral Atoms via Relativistic Treatment Using the Improved Approximation of the Centrifugal Term and Bopp’s Shift Method", Few-Body Systems, Vol. 61, 2020

DOI: https://doi.org/10.1007/s00601-020-01559-z