This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] R.F. Almgren, Second-order phase field asymptotics for unequal conductivities, SIAM J. Appl. Math. 59(6)(1999) 2086-2107.
[2] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal. 92 (1986) 205-245.
[3] J.W. Cahn, Critical point wetting, J. Chem. Phys. 66 (1977) 3667-3672.
[4] S.I. Ei, M.H. Sato, E. Yanagida, Stability of Stationary Interfaces with Contact Angle in a Generalized Mean Curvature Flow, American Journal of Mathematics. 118(3) (1996) 653-687.
[5] P.C. Fife, Dynamics of internal layers and diffusive interfaces, SIAM, Philadephia, PA, (1988).
[6] G. Fix, Phase field methods for free boundary problems, in: Free Boundary Problems, A. Fasano and M. Primicerio, eds., Pitman, London, 1983, pp.580-589.
[7] B.I. Halperin, P.C. Hohenberg, S. Ma, Renormalization Group Methods for Critical Dynamics: I. Recursion Relations and Effects of Energy Conservation, Phys. Rev. B. 10 (1974) 139-153.
[8] A. Karma, W.J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E. 53 (1996) R3017-R3020.
[9] A. Karma, W. J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E. 57 (1998) 4323-4349.
[10] M. Katsoulakis, G. T. Kossioris, F. Reitich, Generalized Motion by Mean Curvature with Neumann Conditions and the Allen-Cahn Model for Phase Transitions, The Journal of Geometric Analysis, 5(2)(1995) 255-279.
[11] J.S. Langer, Models of pattern formation in first-order phase transitions, in: Directions in Condensed Matter Physics, World Science Publishers, 1986, pp.164-186.
[12] G.B. McFadden, A.A. Wheeler, D. M. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities, Physica D. 144 (2000) 154-168.
[13] M. Plapp, Remarks on some open problems in phase-field modelling of solidification, Philosophical Magazine. 91 (2011) 25-44.
[14] T.Z. Qian, X.P. Wang, P. Sheng, Generalized Navier boundary condition for the moving contact line, Comm. Math. Sci. 1 (2003) 333-341.
[15] T.Z. Qian, X.P. Wang, P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Physical Review E. 68 (2003) 016306.
[16] N.K. Simha, K. Bhattacharya, Edge effects on the propagation of phase boundaries, Materials Science and Engineering A. 273-275 (1999) 241-244.
[17] I. Singer-Loginova, H.M. Singer, The phase field technique for modeling multiphase materials, Rep. Prog. Phys. 71 (2008) 106501.