This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] R. F. Almgren, Second-order phase field asymptotics for unequal conductivities, SIAM J. Appl. Math., 59(6)(1999), 2086-2107.
[2] W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Phase field simulation of solidification, Annu. Rev. Mater. Res., 32(2002), 163-194.
[3] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal., 92 (1986), 205-245.
[4] J. W. Cahn, Critical point wetting, J. Chem. Phys., 66(1977), 3667-3672.
[5] B. Echebarria, R. Folch, A. Karma and M. Plapp, Quantitative phase-field model of alloy solidification, Phys. Rev. E, 70(2004), 061604.
[6] S. I. Ei, M. H. Sato, E. Yanagida, Stability of Stationary Interfaces with Contact Angle in a Generalized Mean Curvature Flow, American Journal of Mathematics, 118(3)(1996), 653-687.
[7] P. C. Fife, Dynamics of internal layers and diffusive interfaces, SIAM, Philadephia, PA, (1988).
[8] G. Fix, Phase field methods for free boundary problems, in: Free Boundary Problems, A. Fasano and M. Primicerio, eds., Pitman, London(1983), 580-589.
[9] B. I. Halperin, P. C. Hohenberg and S. Ma, Renormalization Group Methods for Critical Dynamics: I. Recursion Relations and Effects of Energy Conservation, Phys. Rev. B, 10(1974), 139-153.
[10] A. Karma, Phase-Field Formulation for Quantitative Modeling of Alloy Solidification, Phys. Rev. Lett., 87(2001), 115701.
[11] A. Karma, W. J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53(1996), R3017-R3020.
[12] A. Karma, W. J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57(1998), 4323-4349.
[13] M. Katsoulakis, G. T. Kossioris and F. Reitich, Generalized Motion by Mean Curvature with Neumann Conditions and the Allen-Cahn Model for Phase Transitions, The Journal of Geometric Analysis, 5(2)(1995), 255-279.
[14] J. S. Langer, Models of pattern formation in first-order phase transitions, in: Directions in Condensed Matter Physics, World Science Publishers(1986), 164-186.
[15] G. B. McFadden, A. A. Wheeler, D. M. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities, Physica D, 144(2000), 154-168.
[16] M. Plapp, Remarks on some open problems in phase-field modelling of solidification, Philosophical Magazine, 91(2011), 25-44.
[17] J. C. Ramirez, C. Beckermann, A. Karma and H. -J. Diepers, Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion, Phys. Rev. E, 69(2004), 051607.
[18] I. Steinbach, Phase-field models in materials science, Model. Simul. Mater. Sci. Eng., 17(2009), 073001.
[19] N.K. Simha, K. Bhattacharya, Edge effects on the propagation of phase boundaries, Materials Science and Engineering A, 273-275(1999), 241-244.
[20] I. Singer-Loginova and H. M. Singer, The phase field technique for modeling multiphase materials, Rep. Prog. Phys., 71(2008), 106501.