Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IFSL > Volume 8 > A Phase Field Model for Binary Alloy...
< Back to Volume

A Phase Field Model for Binary Alloy Solidification with Boundary Interface Intersection

Full Text PDF


A phase field model for binary alloy solidification with boundary interface intersection is developed. In the phase field model, the heat and solute conservation equations are appropriately modified to account for the presence of heat and solute rejection inside the diffuse interface, and a relaxation boundary condition for the phase field variable is introduced to balance the interface energy and boundary surface energy in the multiphase contact region. The thin interface asymptotic analysis is applied on the phase field model to yield the free interface problem with dynamic contact point condition.


International Frontier Science Letters (Volume 8)
J. Liao "A Phase Field Model for Binary Alloy Solidification with Boundary Interface Intersection", International Frontier Science Letters, Vol. 8, pp. 9-18, 2016
Online since:
Jun 2016

[1] R. F. Almgren, Second-order phase field asymptotics for unequal conductivities, SIAM J. Appl. Math., 59(6)(1999), 2086-2107.

[2] W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Phase field simulation of solidification, Annu. Rev. Mater. Res., 32(2002), 163-194.

[3] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal., 92 (1986), 205-245.

[4] J. W. Cahn, Critical point wetting, J. Chem. Phys., 66(1977), 3667-3672.

[5] B. Echebarria, R. Folch, A. Karma and M. Plapp, Quantitative phase-field model of alloy solidification, Phys. Rev. E, 70(2004), 061604.

[6] S. I. Ei, M. H. Sato, E. Yanagida, Stability of Stationary Interfaces with Contact Angle in a Generalized Mean Curvature Flow, American Journal of Mathematics, 118(3)(1996), 653-687.

[7] P. C. Fife, Dynamics of internal layers and diffusive interfaces, SIAM, Philadephia, PA, (1988).

[8] G. Fix, Phase field methods for free boundary problems, in: Free Boundary Problems, A. Fasano and M. Primicerio, eds., Pitman, London(1983), 580-589.

[9] B. I. Halperin, P. C. Hohenberg and S. Ma, Renormalization Group Methods for Critical Dynamics: I. Recursion Relations and Effects of Energy Conservation, Phys. Rev. B, 10(1974), 139-153.

[10] A. Karma, Phase-Field Formulation for Quantitative Modeling of Alloy Solidification, Phys. Rev. Lett., 87(2001), 115701.

[11] A. Karma, W. J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53(1996), R3017-R3020.

[12] A. Karma, W. J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57(1998), 4323-4349.

[13] M. Katsoulakis, G. T. Kossioris and F. Reitich, Generalized Motion by Mean Curvature with Neumann Conditions and the Allen-Cahn Model for Phase Transitions, The Journal of Geometric Analysis, 5(2)(1995), 255-279.

[14] J. S. Langer, Models of pattern formation in first-order phase transitions, in: Directions in Condensed Matter Physics, World Science Publishers(1986), 164-186.

[15] G. B. McFadden, A. A. Wheeler, D. M. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities, Physica D, 144(2000), 154-168.

[16] M. Plapp, Remarks on some open problems in phase-field modelling of solidification, Philosophical Magazine, 91(2011), 25-44.

[17] J. C. Ramirez, C. Beckermann, A. Karma and H. -J. Diepers, Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion, Phys. Rev. E, 69(2004), 051607.

[18] I. Steinbach, Phase-field models in materials science, Model. Simul. Mater. Sci. Eng., 17(2009), 073001.

[19] N.K. Simha, K. Bhattacharya, Edge effects on the propagation of phase boundaries, Materials Science and Engineering A, 273-275(1999), 241-244.

[20] I. Singer-Loginova and H. M. Singer, The phase field technique for modeling multiphase materials, Rep. Prog. Phys., 71(2008), 106501.

Show More Hide