This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] G. Serio, Two-Stage Stochastic Model for Carcinogenesis with Time-Dependent Parameters, Statistics & Probability Letters 2(1984) 95-103.
DOI: https://doi.org/10.1016/0167-7152(84)90057-9[2] W. Y. Tan, A stochastic model for the formation of metastatic foci at distant sites. Mathematical and Computer Modelling. 12(1989) 1093–1102.
DOI: https://doi.org/10.1016/0895-7177(89)90230-6[3] D. W. Quinn, The method of characteristics applied to a stochastic two-stage model of carcinogenesis. Mathematical and Computer Modelling. 25(1997) 1–13.
[4] S. H. Moolgavkar, D. J. Venzon, Two-event models for carcinogenesis: incidence curves for childhood and adult tumors. Mathematical Biosciences. 47(1979) 55–77.
DOI: https://doi.org/10.1016/0025-5564(79)90005-1[5] W. Y. TAN,. A Nonhomogeneous Two-Stage Carcinogenesis Model, Mathl. Modelling. 9(1987) 631-642.
[6] P. Tirupathi Rao, J. Jayabharathiraj, B.N. Naveen Kumar, C. L. Usha, P. Rajasekhara Reddy, Stochastic Modelling of Tumor Growth within Organ during chemotherapy using Bivariate Birth, Death and Migration Processes, IOSR Journal of Mathematics. 10(2014).
DOI: https://doi.org/10.9790/5728-10330108[7] B. G. Birkhead, The Transient Solution of the Linear Birth-Death Process with Random Spontaneous Mutation, Mathematical Biosciences. 82(1986) 193-200.
DOI: https://doi.org/10.1016/0025-5564(86)90137-9[8] S. H. Moolgavkar, Model for human carcinogenesis: action of environmental agents, Environmental Health Perspectives. 50(1983) 285–91.
DOI: https://doi.org/10.2307/3429560[9] B. P. Armitage, The Statistical theory of bacterial populations subject to mutation. Journal of the Royal Statistical Society, 14(1952) 1–40.
[10] A.T. Bharucha-Reid, Elements of the theory of markov processes and their applications, New York, McGraw-Hill, (1960).