This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] K. Heun, Zur Theorie der Riemann 'schen Functionen zweiter Ordnung mit vier Verzweigungsp, (in German), Mathematische Annalen, Vol. 33. pp.161-179, 1889.
[2] A. Ronveaux, Ed, Heun's Differential Equations, New York: Oxford Univ. Press, (1995).
[3] S. Y. Slavyanov, W. Lay, Special Functions, A Unified Theory Based on Singularities. New York, Oxford: Oxford Mathematical Monographs, (2000).
[4] E. Papperitz, Ueber verwandte s-Functionen, (in German), Mathematische Annalen Vol. 25, pp.212-221, 1885.
[5] F. Klein, Forlesungen über lineare Differentialgleihungen der zweiten Ordnung, (in German) , Leipzig, Germany: Teubner, (1906).
[6] A. R. Forsyth, Theory of Differential Equations, Part III, New York: Cambridge University Press, (1902).
[7] V. I. Smirnov, Selectet papers. Analytical theory of ordinary differential equations, (in Russian), St. Petersburg, Rissia: St. Petersburg University Press, (1996).
[8] W. J. Frank, F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, Eds, in NIST Handbook of Mathematical Functions, New York: Cambridge University Press and the National Institute of Standards and Technology, 2010, ch. 31, pp.710-721.
[9] Plamen P. Fiziev, Novel relations and new properties of confluent Heun's functions and their derivatives of arbitrary order, Journal of Physics A: Mathematical and Theoretical, Vol. 43, 035203, (2010).
[10] V. V. Golubev, Lectures on the analytic theory of differential equations, (in Russian), Moscow, Russia: Gos. Izd. Teh. -Theor. Lit., (1950).
[11] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations. TMH Eddition 1972, 9th Reprint, New York: Mc Graw-Hill Inc., (1987).
[12] A. Kratzer, W. Franz, Transzendente Funktionen, (in German), Leipzig, Germany: Akademishe Verlagsoesselschaft, (1960).
[13] A. Ya. Kazakov , W. Lay, S. Yu. Slavyanov, Eigenvalue prolems for Heun's equations, it Algebra and Analysis, (in Russian), Vol. 8, pp.129-141, (1996).
[14] M. Ablowitz, A. S. Fokas, Complex Variables Introduction and Applications, New York: Cambridge University Press, (2003).
[15] W. Lay, S. Yu. Slavyanov, The central two-point connection problem for the Heun class of ODE, Journal of Physics A: Mathematical and General Vol. 31, pp, 8521-8531, (1998).
[1] M. Hortaçsu, "Heun Functions and Some of Their Applications in Physics", Advances in High Energy Physics, Vol. 2018, p. 1, 2018
DOI: https://doi.org/10.1155/2018/8621573