This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] G. Tao, P.V. Kokotovic, Adaptive Control of Systems with Actuator and Sensor Nonlinearities, Wiley: New York, (1996).
[2] E.W. Bai, V. Cerone, D. Regruto, Separable inputs for the identification of block-oriented nonlinear systems, Proc. of the 2007 American Control Conf., New York, pp.1548-1553, July (2007).
DOI: https://doi.org/10.1109/acc.2007.4282538[3] J. Vörös, Compound operator decomposition and its application to Hammerstein and Wiener systems, in: F. Giri, E.W. Bai (Eds. ), Block-oriented Nonlinear Systems, in: Lecture Notes in Control and Information Sciences, Springer, Heidelberg, 404, 2010, 35-51.
DOI: https://doi.org/10.1007/978-1-84996-513-2_4[4] L. Ljung, System Identification, Prentice-Hall PTR: New Jersey, (1999).
[5] G. Tao, P.V. Kokotovic, Adaptive control of plants with unknown dead-zones, IEEE Transactions on Automatic Control. 39(1), 1994, 59-68.
DOI: https://doi.org/10.1109/9.273339[6] J. Vörös, Recursive identification of systems with noninvertible output nonlinearities, Informatica, 21(1), 2010, 139-148.
[7] A. Hagenblad, Aspects of the Identification of Wiener Models, Linköping studies in science and technology, Thesis No 793, Division of Automatic Control, Department of Electrical Engineering, Linköpings Universitet, SE-581 83 Linköping, Sweden, (1999).
[8] R. Pupeikis, On the identification of Wiener systems having saturation-like functions with positive slopes, Informatica, 16(1), 2005, 131-144.
[9] K. Kazlauskas, R. Pupeikis, Self-tuning control of linear systems followed by dead-zones, TEM journal, 3(1), February 2014, 3-7.
[10] R. Pupeikis, Self-tuning minimum variance control of linear systems followed by saturation nonlinearities in a noisy frame, Int. Journal of Robust and Nonlinear Control. 24(2), January 2014, 313-325.
DOI: https://doi.org/10.1002/rnc.2888[11] J. S. Bendat, A.G. Piersol, Measurement and Analysis of Random Data, Wiley: New York, (1967).