Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IFSL > IFSL Volume 5 > Icosahedral Symmetry: A Review
< Back to Volume

Icosahedral Symmetry: A Review

Full Text PDF


This Review covers over 40 years of research on using the algebras of Quarternions E6;E8to model Elementary Particle physics. In particular the Binary Icosahedral group is isomorphic to theExceptional Lie algebra E8 by the MacKay correspondence. And the toric graph of E8 in Fig.2 with240 vertices on 4 binary Riemann surfaces each carrying 60 vertices, models a solution of the Ernstequation for the stationary symmetric Einstein gravitational equation. Furthermore the 15 synthemesof E8, consisting of 5 sets of 3,can be identified with algebraic representations of the nucleon,supersymmetric particles,W bosons and Dark Matter.


International Frontier Science Letters (Volume 5)
J.A. de Wet, "Icosahedral Symmetry: A Review", International Frontier Science Letters, Vol. 5, pp. 1-8, 2015
Online since:
October 2015

J.R. Adams, Lectures on Exceptional Lie Groups, Univ. of Chicago Press(1996).

John Baez, Some thoughts on the number 6, http: /math. ucr. edu/home/baez/six. html.

W. Barth and J. Nieto, Abelian surfaces of type (1, 3) and quartic surfaces with 16 skew lines, J. Algebraic Geometry 3(1994)173-222.

Sundance O. Billson-Thompson, Fotini Markopoulos and Lee Smolin, Quantum Gravity and the Standard Model, online(2014).

A.E. Brouwer, Lattices, online(2002).

Benjamin Brau, Determining the muon mass in an Instructional Laboratory, Am.J. Phys. 73(2010)64-70; arXiv: 0007. 5641.

J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag New York(1993).

H.S.M. Coxeter, The polytope 221 whose 27 vertices correspond to the lines on the general cubic surface, Am. Mathematical Soc. 62(1940)467-486.

H.S.M. Coxeter, Regular Complex Polytopes, Camb. Univ. Press (1991).

J.A. de Wet, A group theoretical approach to the many nucleon problem, Proc. Camb. Phil. soc. 70(1971)485-496.

J.A. de Wet, Nuclear deuteron structure and nucleon entanglement, Intern. Math. Journal 5(2004)49-60.

J.A. de Wet, Icosahedral symmetry in the MSSM, Intern. Mathematical Forum 5(2010)291-300. Available online under Hikari, Ltd.

J.A. de Wet, A new way to detect neutrinos, Intern, Mathematical Forum, 7(2012)791-797, Available online under Hikari, Ltd.

J.A. de Wet, On the strong force without QCD and the origin of mass without the Higgs, Int. Mathematical Forum 29(2012)1419-1425, Available online under Hikari. Ltd.

J.A. de Wet, Particle knots in toric modular space, Bulletin of Soc. for Mathematical Services and Standards 3(2014)54-59.

J.A. de Wet, A Standard Model algebra, Int. Mathematical Forum 7(2012)2519-2524. Available online from Hikari. Ltd.

J.A. de Wet, Icosahedral Supersymetry and Dark Matter, Int. Frontier Science Letters(ISFL) 2(2014) 12-16.

J.A. de Wet, Icosahedral Symmetry and Quantum Gravity, ISFL(May, 2015)online.

A.S. Eddington, Fundamental Theory, Camb. Univ. Press(1958).

M.B. Green J.H. Schwarz and E. Witten, Superstring Theory, Camb. Univ. Press(1987).

Bruce Hunt, The Geometry of some Arithmetic Quotients, Lecture Notes in Mathematics, 1637, Springer, Berlin, Heidelberg(1996).

D.A. Korotkin, Elliptic solutions of stationary axisymmetric Einstein equation, Classical Quantum Gravity 10(1993)2587-2613.

C. Klein,D. Korotkin and V. Shramchenko, Ernst equation, Fay identities and variational formulas on hyperelliptic curves, arXiv: math-ph/0401055(2014).

Lukas Lewark, Theta Functions, Seminar on Modular Forms(Jan 2007)online.

John MacKay, Cartan matrices , finite groups of quaternions and Kleinian singularities, Proc. AMS(1981)153-154.

I. Manivel, Configuration of lines and models of Lie algebras, arXiv: math. AG/0507118(2005).

M.F. Newman and Csaba Schneider, The entropy of graded algebras, J of Algebra, 223(2000)85- 100.

Roger Penrose, The Emperor's New Mind, Vintage. London(1990).

R. Slansky, Group theory for unified model building, Reprinted in Unity of Forces in the Universe, Ed.A. Lee, World Scientific(1992).

Show More Hide
Cited By:
This article has no citations.