Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IFSL > Volume 3 > A New Approach for Parameters of Nucleon-Nucleon...
< Back to Volume

A New Approach for Parameters of Nucleon-Nucleon Scattering at Low Energies in One and Two Dimensions

Full Text PDF

Abstract:

Many of the important properties of multi-nucleon systems can be found by studying the nucleon- nucleon interactions. In this work, a suitable central and an appropriate noncentral potential have been used to study nucleon- nucleon scattering in one and two dimensions. The phase shift, scattering cross section, length and amplitude are calculated using the Nikiforov-Uvarov (NU) method and WKB approximation. Comparison between the results of the suggested model in this article and the experimental reported values indicates that there is a good consistency between them.

Info:

Periodical:
International Frontier Science Letters (Volume 3)
Pages:
1-10
Citation:
M. R. Shojaei et al., "A New Approach for Parameters of Nucleon-Nucleon Scattering at Low Energies in One and Two Dimensions", International Frontier Science Letters, Vol. 3, pp. 1-10, 2015
Online since:
Jan 2015
Export:
Distribution:
References:

[1] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd edition, Pergamum, New York, (1977).

[2] V. E Barlette, M. M Leite and S. K Adhikari, Quantum Scattering in one Dimension, Eur. J. Phys. 21, 435-440 (2000).

DOI: https://doi.org/10.1088/0143-0807/21/5/309

[3] I. R. Lapidus, Quantum-mechanical scattering in 2 dimensions, Am. J. Phys. 50, 45-47 (1982).

[4] M. J. Moritz and H. Friedrich, Scattering by a Coulomb field in two dimensions, Am. J. Phys. 66, 274 (1998).

[5] I. R. Lapidus, Scattering by two-dimensional circular barrier, hard circle, and delta-function ring Potentials, Am. J. Phys. 54, 459-461(1986).

DOI: https://doi.org/10.1119/1.14585

[6] J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley, (1994).

[7] A. Agarwal, A. E. Lipstein, and D. Young, Scattering amplitudes of massive N=2 gauge theories in three dimensions, Phys. Rev. D 89, 045020 (2014).

[8] G. Barton, Rutherford scattering in 2 dimensions, Am. J. Phys. 51, 420-422 (1983).

[9] P. A. Maurone and T.K. Lim, More on two-dimensional scattering, Am. J. Phys. 51, 856-857 (1983).

[10] K. S. Krane, Introductory Nuclear Physics, John Wiley and Sons, New York, (1987).

[11] S. K. Adhikari, Quantum scattering in two dimensions, Am. J. Phys. 54, 362-367 (1986).

[12] M. Farrokh, M. R. Shojaei and A. A. Rajabi, Klein-Gordon equation with Hulth'en potential and position-dependent mass, Eur. Phys. J. Plus 128, 14 (2013).

DOI: https://doi.org/10.1140/epjp/i2013-13014-4

[13] R. G. Newton, Scattering Theory of Waves and Particles, 2nd Edition, Springer-Verlag, New York, (1982).

[14] H. Feizi, M.R. Shojaei and A. A. Rajabi., Raising and lowering operators for the Dirac-Woods-Saxon potential in the presence of spin and pseudospin symmetry, Eur. Phys. J. Plus 127, 41 (2012).

DOI: https://doi.org/10.1140/epjp/i2012-12041-y

[15] S. K. Adhikari and M. S. Hussein, Semi-classical scattering in two dimensions, Am. J. Phys. 70, 663 (2008).

[16] S. K. Adhikari, Variational Principles and the Numerical Solution of Scattering Problems, New York: John Wiley, (1998).

[17] T. Miyazawa, Boson representations of one-dimensional scattering, J. Phys. A- Math. Gen. 33, 191 (2000).

[18] M. Visser, Some general bounds for one-dimensional scattering, Phys. Rev. A. 59, 427 (1999).

[19] L. V. Chebotarev and A. Tchebotareva, Flat resonances in one-dimensional quantum scattering, J. Phys. A 29, 7259 (1996).

DOI: https://doi.org/10.1088/0305-4470/29/22/021

[20] Y. Nogami and C. K. Ross, Scattering from a Nonsymmetric potential in one Dimension as a Coupled-channel Problem, Am. J. Phys. 64, 923-928 (1996).

DOI: https://doi.org/10.1119/1.18123

[21] S. M. Ikhdair and R. Sever, Approximate Analytical Solutions of the Generalized Woods- Saxon Potentials Including the Spin-Orbit Coupling Term and Spin-Symmetry, Cent. Eur. J. Phys. 8, 652, (2010).

DOI: https://doi.org/10.2478/s11534-009-0118-5

[22] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Boston, (1988).

[23] M. R. Shojaei, A. A. Rajabi, M. Farrokh, N. Zoghi-Foumani, Energy Levels of Spin-1/2 Particles with Yukawa Interaction, JMP 5, 773-780 (2014).

DOI: https://doi.org/10.4236/jmp.2014.59087

[24] A. N. Ikot and I. O. Akpan, Bound State Solutions of Schrödinger Equation for a more general Woods-Saxon Potential with Arbitrary - state, Chinese Phys. Lett. 29 090302 (2012). l.

DOI: https://doi.org/10.1088/0256-307x/29/9/090302

[25] W. Greiner, Quantum Mechanics, an introduction, 4th edition, Springer-Verlag, New York, (1989).

[26] H. S. Hans, Nuclear Physics: Experimental and Theoretical, New Age International, (2001).

[27] M. S. Hussein, Y. T. Chen and F. I. A. Almedia, The Validity of the Classical Description of Nuclear Scattering, Am. J. Phys. 52, 650-653, (1984).

[28] S. M. Ikhdair and R. Sever, Exact Solutions of the D-Dimensional Schrödinger Equation for a Ring-Shaped Pseudoharmonic potential, Cent. Eur. Phys. 6(3), 685-696 (2008).

DOI: https://doi.org/10.2478/s11534-008-0024-2

[29] M. L. Sage, The vibrations and rotations of the pseudogaussian oscillator, Chem. Phys. 87, 431-439 (1984).

DOI: https://doi.org/10.1016/0301-0104(84)85123-x

[30] M. L. Sage and J. Goodisman, Improving on the conventional presentation of molecular vibrations: advantages of the pseudoharmonic potential and the direct construction of potential energy curves, Am. J. Phys. 53, 350-355 (1985).

DOI: https://doi.org/10.1119/1.14408
Show More Hide