A new approach of the concept of prime number

Jamel Ghanouchi

Professor of Mathematics
RIME Department of Mathematics
6 Rue Khansa 2070 Marsa Tunisia

Keywords: Reals; Primes; Transcendentality; Cryptology

Abstract
In this paper, we generalize the concept of prime number and define the real primes. It allows to apply the new concept to cryptology.

Introduction

The prime numbers are called primes because they are the bricks of the numbers: Each number \(n \) can be written as \(\prod p_j^{n_j} \) when \(p_j \) are primes and \(n_j \) are integers. This writing is called the decomposition in prime factors of the number \(n \). In fact, this definition is very particular case of a much more general one. Indeed, if \(n_j \) are rationals, everything changes. Considering that the decomposition in prime factors of an integer \(n \) when \(n_j \) are rationals. In this writing, then the \(j \) have no reason to be the same than before and they become a convention. For example, if we decide that 16 is conventionally prime, we have \(2 = 16 \times 1/4 \) and each number can be written according to 16 and its rational exponent instead of 2. If we decide conventionally that each Fermat number is prime, and it is possible by the fact that they are coprime two by two, then each new prime (new primes=bricks with rational exponents in the writing) replaces another one in the list of the old primes (old primes=bricks with integral exponents in the writing).

Example: If by convention, the fifth Fermat number \(=4294967297 = 641 \times 6700417 \) is prime, we can decide that it replaces 641 which becomes compound and 6700417 is prime or 641 is prime and 67004147 is compound.

In all cases, the advantage is that we have a formula which gives for each \(n \) a prime. And we can see the the primes are infinite.

There is another interesting result: Let Ulam spiral. The Fermat numbers are all situated in the same line.

1. Definition
A real number is compound if it can be written as \(\prod p_j^{n_j} \) where \(p_j \) are primes and \(n_j \) are rationals. This decomposition in prime factors is unique. A prime real number or R-prime can be written only as \(p = p \times 1 \). Thus we define other real prime numbers like \(\pi \), \(e \), \(\ln(2) \). Of course, it is a convention, because, we can consider \(\pi^2 \) as prime and \(\pi \) will be no more prime. It is equivalent in what will follow.

Thus \(\sqrt[3]{p} = p^{1/3} \) is compound. Also we have \(\sqrt[3]{p} + 1 = p^{1/3} + 1 \) when \(p \) is prime and we have \(\sqrt[3]{p} - 1 = (p - 1)(\sqrt[3]{p} + 1)^{-1}(\sqrt[3]{p} + 1)^{-1}(\sqrt[3]{p} + 1)^{-1} \) compound for \(p \) prime, for example.

Another example: \(\sqrt{p^2 - 3p + 1} = (p + 1)(\sqrt{p} + 1)^{-1} \)

It is 5/2 that divises 5 not the contrary!
2. Division of a real by a real
The GCD of two numbers
p and q are prime numbers:
\[p \neq q \Rightarrow GCD(p, q) = 1 \]
\[nm < 0 \Rightarrow GCD(p^n, p^m) = 1 \]
\[nm > 0; m > 0; GCD(p^n, p^m) = p^{\min(m,n)} \]
\[nm < 0; m < 0; GCD(p^n, p^m) = p^{\max(m,n)} \]
\[i \geq n_i \geq 1; GCD(\prod_{n=1}^{n_i} p_n^{m_n}, \prod_{l=1}^{l_i} p_l^{q_l}) = \prod_{l=1}^{l_i} GCD(p_l^{m_l}, p_l^{q_l}) \]
So a real number y divises a real number x if GCD(x, y) = y.

3. Theorem
p is prime then
\[\forall a \in \mathbb{R}, \exists k \in \mathbb{R}; a^p = a + kp \]

4. Proof of the theorem
\[a = \sum_{n=0}^{\infty} a_n 10^{-m}; a_n \in \mathbb{N} \]
\[\exists k, k'; a^p = \sum_{n=0}^{\infty} a_n p 10^{-m} + kp = \sum_{n=0}^{\infty} (a_n + k) 10^{-m} + kp = \sum_{n=0}^{\infty} a_n 10^{-m} + k' p = a + k' p \]

5. The probabilities
What the probability that a number between x+dx and x is prime? It is
\[p(x' \in [x, x+dx]) = \frac{\log(x+dx) - \log(x)}{dx} \]
Effectively
\[\log(1 + \frac{dx}{x}) = \log(x + dx) - \log(x) = \frac{dx}{x} = d \log(x) \]
And
\[p(x' \in [x, x+dx]) = p(x' \in [0, x+dx]) - p(x' \in [0, x]) = \frac{\log(x+dx)}{x+dx} - \frac{\log(x)}{x} \]
\[= \frac{\log(x+dx)}{x} - \frac{\log(x)}{x} = d \log(x) \]
How many primes are there between x and x+dx? There are
\[\pi(x) = \int \frac{dx}{d \log(x)} = \infty \]
6. Applications to cryptology

Let us build real numbers P and Q. We have p_1 a prime and u_n a sequence.

We know that $p_n = 1 + \sqrt[p_{n-1}]{P}$ is a real. With N enough great, $P = p_N$. Also with another prime q_1 and another sequence v_n, we have another real with M enough great, $Q = q_M$. As

$1 + \sqrt{P}$ is real and $1 + \sqrt{Q}$ is real, let $n = \sqrt{P} + \sqrt{Q}$. Let $e = \alpha + u\sqrt{P} + v\sqrt{Q}$ and let $d = Kn - e$.

If we have n and e public keys, the message is $M = C + e + kn$ and the cypher is $C = M - e + k'n = M + d + k'n$.

Another possibility is to take $n = PQ$ and $e = \alpha \frac{(P-1)^n}{(Q-1)^n}$ then

n and e are the public keys and $M = C^e + kn$ then $C = M^d + k'n$ with $d = \frac{(P-1)^n}{(Q-1)^n}$.

Example:

$p = 79, q = 83$

$p_1 = \sqrt{79} + 1 = 3.39621299$

$q_1 = \sqrt{83} + 1 = 2.879983394$

$P = \sqrt{p_1} + 1 = 2.842881708$

$Q = \sqrt{q_1} + 1 = 2.697051392$

$n = PQ = 7.629465043$

$e = \frac{9378.2}{(P-1)^n(Q-1)^n} = \frac{5.737752231}{2.36311566(2-1)(1-1)}$

$M = 79.836$

$M^e = 79.863^{2.36311566} = 4.628\alpha(n)$

$d = \frac{(P-1)^n(Q-1)^n}{\alpha} = 0.31 \times 28286$

$13445 \times 7.629465043 + 4.6268 \times 2580.2768$

$C = 102580.2768^{0.339753156} = 79.86373604 \Rightarrow C = 79.863$

7. Conclusion

We have generalized the concept of prime to the reals. It allowed to present an application to cryptology.

References

[2]. X. Gourdon, « The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height »