Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IFSL > IFSL Volume 2 > A New Approach of the Concept of Prime Number
< Back to Volume

A New Approach of the Concept of Prime Number

Removed due to low scientific quality

Full Text PDF

Abstract:

In this paper, we generalize the concept of prime number and define the real primes. It allows to apply the new concept to cryptology.

Info:

Periodical:
International Frontier Science Letters (Volume 2)
Pages:
12-15
Citation:
J. Ghanouchi, "A New Approach of the Concept of Prime Number", International Frontier Science Letters, Vol. 2, pp. 12-15, 2014
Online since:
October 2014
Authors:
Export:
Distribution:
References:

[1] R. J. Backlund, « Sur les zéros de la fonction ζ(s) de Riemann », CRAS, vol. 158, 1914, p.1979–(1981).

[2] X. Gourdon, « The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height.

[3] J.P. Gram, « Note sur les zéros de la fonction ζ(s) de Riemann », Acta Mathematica, vol. 27, 1903, p.289–304.

DOI: https://doi.org/10.1007/bf02421310

[4] J.I.hutchinson « On the Roots of the Riemann Zeta-Function », Trans. AMS, vol. 27, no 1, 1925, p.49–60.

[5] A. M. Odlyzko, The 1020-th zero of the Riemann zeta function and 175 million of its neighbors, (1992).

[6] J.Barkley Rosser, J. M. Yohe et Lowell Schoenfeld, « Rigorous computation and the zeros of the Riemann zeta-function.», Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software, Amsterdam, North-Holland, 1969, p.70–76.

[7] http://fr.wikipedia.org/wiki/Edward_Charles_Titchmarsh E.C. Titchmarsh, « The Zeros of the Riemann Zeta-Function », Proceedings of the Royal Society, Series A, Mathematical and Physical Sciences, vol. 151, no 873, 1935, p.234–255.

DOI: https://doi.org/10.1098/rspa.1935.0146

[8] E. C. Titchmarsh, « The Zeros of the Riemann Zeta-Function », Proceedings of the Royal Society, Series A, Mathematical and Physical Sciences, The Royal Society, vol. 157, no 891, 1936, p.261–263.

DOI: https://doi.org/10.1098/rspa.1936.0192

[9] A.M. Turing, « Some calculations of the Riemann zeta-function », Proceedings of the LMS, Third Series, vol. 3, 1953, p.99–117.

[10] J. van de Lune, H.te Riele et D. T. Winter, « On the zeros of the Riemann zeta function in the critical strip. IV », Mathematics of Computation, vol. 46, no 174, 1986, p.667–681.

DOI: https://doi.org/10.2307/2008005
Show More Hide
Cited By:
This article has no citations.