The Unsteady Flow of a Fluid of Finite Depth with an Oscillating Bottom

N. Pothanna1,*, P. Aparna2

1,2Department of Mathematics, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, 500090, Telangana State, India.

pothareddy81@gmail.com

\textbf{Keywords:} Thermo-viscous fluid, thermo-stress-viscosity coefficient, Prandtl number.

\textbf{Abstract.} In this paper, the unsteady flow of a fluid of finite depth with an oscillating bottom is examined. The flow is assumed in the absence of viscous dissipation. The governing equations of the flow are decoupled in the velocity and temperature fields. The velocity and temperature fields have been obtained analytically. The effects of various material parameters on these fields have been discussed with the help of graphical illustrations. It is noticed that the upward thrust \((\rho f_y) \) vanishes when Reiner-Rivlin coefficient of viscosity \((\mu_c) \) is zero and the transverse force \((\rho f_z) \) perpendicular to the flow direction vanishes for thermo-viscosity coefficient \((\alpha_s) \) is zero. The external forces generated perpendicular to the flow direction is a special feature of thermo-viscous fluid when compared to the other type of fluids.

\textbf{I. Introduction}

Considerable interest has been evinced in the recent years on the study of viscous flows because of its natural occurrence and its importance in industrial geophysical and medical applications. Some practical problems involving such studies include the percolation of water through solids, the drainage of water for irrigation, the aquifer considered by the ground water hydrologists, the reserve bed used for filtering drinking water and the seepage thorough slurries in drains by the sanitary engineer, the flow of liquids through ion-exchange beds, cleaning of oil-spills etc. In the physical world, the investigation of the flow of thermo-viscous flows has become an important topic due to the recovery of crude oil from the pores of reservoir rocks, the extraction and filtration of oil from wells, the oil reservoir treated by the reservoir engineer, the extraction of energy from geo-thermal regions are some of the areas in which thermo-viscous flows have been noticed.

The concept of thermo-viscous fluids which reflect the interaction between thermal and mechanical responses in fluids in motion due to external influences was introduced by Koh and Eringen in 1963. For such a class of fluids, the stress-tensor \(t \) and heat flux bivector \(h \) are postulated as polynomial functions of the kinematic tensor, viz., the rate of deformation tensor \(d \):

\[d_{ij} = (u_{i,j} + u_{j,i})/2 \]

and thermal gradient bivector \(b \)

\[b_{ij} = \varepsilon_{ijk} \theta_k \]

where \(u_i \) is the \(i^{th} \) component of velocity and \(\theta \) is the temperature field.

A second order theory of thermo-viscous fluids is characterized by the pair of thermo-mechanical constitutive relations:

\[t = \alpha_1 d + \alpha_2 d^2 + \alpha_3 b^2 + \alpha_4 (db - bd) \]

and

\[h = \beta_1 b + \beta_2 (bd + db) \]
with the constitutive parameters α_i, β_i being polynomials in the invariants of d and b in which the coefficients depend on density(ρ) and temperature(θ) only. The fluid is Stokesian when the stress tensor depends only on the rate of deformation tensor and Fourier-heat-conducting when the heat flux bivector depends only on the temperature gradient-vector, the constitutive coefficients α_i and α_j may be identified as the fluid pressure and coefficient of viscosity respectively and α_s as that of cross-viscosity.

Flow of incompressible homogeneous thermo-viscous fluids satisfies the usual conservation equations:

Equation of continuity

$$\nabla \cdot \mathbf{v} = 0$$

Equation of momentum

$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right] = \rho \mathbf{F}_k + \mathbf{t}_{ij,j}$$

and the energy equation

$$\rho c \frac{\partial \theta}{\partial t} = t_{ij} d_{ij} - q_{ij,i} + \rho \gamma$$

where

$F_k = k^{th}$ Component of external force per unit mass,
$c =$ Specific heat,
$\gamma =$Thermal energy source per unit mass
$q_{ij} = Q^{th}$ Component of heat flux bivector $= \epsilon_{ijk} h_{jk}/2$
$t_{ij} =$ The components of stress tensor
$d_{ij} =$ The components of rate of deformation tensor

Keeping this in mind the relevance and growing importance of thermo-viscous fluids in geophysical fluid dynamics, chemical technology and industry; the present paper attempts to study the variations of velocity and temperature fields on the unsteady flow of thermo-viscous fluid over a flat plate with an oscillating bottom for the various material parameters.

II. Mathematical Formulation and Solution

Consider the Cartesian coordinate system O(X,Y,Z) with the origin on oscillating plate, the X-axis is considered in the direction of the fluid flow and Y-axis is perpendicular to the plates. Let the second order thermo-viscous incompressible fluid of finite depth \(h \) bounded by the oscillating bottom \(y = 0 \) along the X-direction. The fluid, otherwise at rest, responds to the fluctuations of the bottom. The periods of oscillation of the fluid response and the temperature distribution are assumed to be oscillatory with the same frequency.

\[
\begin{align*}
\text{Free surface} & \quad \text{Fluid velocity } u(y, t) \\
\rightarrow \quad \text{Fluid Flow} & \quad \text{Temperature } \theta(y, t) \\
\h & \quad u(0, t) = u_0 \cos \sigma t, \quad \theta(0, t) = \theta_0 \cos \sigma t
\end{align*}
\]

Fig. 1: Physical Model and Flow Configuration

Consider the unsteady flow be characterized by the velocity field \([u(y,t), 0, 0]\) and temperature field \(\theta(y,t)\). This choice of assumption of velocity usually satisfies continuity equation. It is assumed that (i) the dissipation term \(\mu \left(\frac{\partial u}{\partial y} \right)^2\) in the energy equation neglected (ii) the bottom is oscillating with the velocity \(u_0 \cos \sigma t\) (iii) the temperature of the bottom is oscillating with \(\theta_0 \cos \sigma t\), then the equation of momentum and energy reduces:

in the X-direction:

\[
\rho \frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial y^2}
\]

(1)

in the Y-direction:

\[
0 = \mu_c \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right)^2 + \rho F_y
\]

(2)

in the Z-direction:

\[
0 = \alpha_s \frac{\partial}{\partial y} \left(\frac{\partial \theta}{\partial y} \frac{\partial u}{\partial y} \right) + \rho F_z
\]

(3)
and the energy equation
\[\rho c \frac{\partial \theta}{\partial t} = k \frac{\partial^2 \theta}{\partial y^2} \]
with the boundary conditions:
\[u(0, t) = u_0 \cos \sigma t \quad \text{and} \quad \frac{\partial u}{\partial y}(h, t) = 0 \]
\[\theta(0, t) = \text{Re} \theta_0 \exp(i \sigma t) \quad \text{and} \quad \theta(h, t) = 0 \]
Let the velocity distribution be assumed in the form
\[u(y, t) = \text{Re} f(y) \exp(i \sigma t) \]
Substituting (7) in (1) and using the boundary conditions (5), the velocity distribution is obtained as
\[u(y, t) = \text{Re} u_0 \left[\frac{\cosh m(h - y)}{\cosh(mh)} \right] e^{i \sigma t} \]
\[= u_0 \left[P_1(y) \cos \sigma t - Q_1(y) \sin \sigma t \right] \]
Where \[m = \frac{\delta i \rho}{\mu} \]
here \[P_1(y) = \frac{\cos \delta(2h - y) \cosh(\delta y) + \cos(\delta y) \cosh \delta(2h - y)}{\cosh 2\delta h + \cos 2\delta h} \]
\[Q_1(y) = \frac{\sin \delta(2h - y) \sinh(\delta y) - \sin(\delta y) \sinh \delta(2h - y)}{\cosh 2\delta h + \cos 2\delta h} \]
The temperature distribution is assumed as \[\theta(y, t) = \text{Re} g(y) \exp(i \sigma t) \]
From the equations (4) and (6), we obtain the temperature distribution as
\[\theta(y, t) = \text{Re} \theta_0 \frac{\sinh\left(p_r m^2 (h - y)\right)}{\sinh(p_r m^2 h)} \]
\[= \theta_0 \left[P_2(y) \cos \sigma t - Q_2(y) \sin \sigma t \right] \]
with \[p_r = \frac{\mu c}{k} \] is the prandtl number.
\[P_2(y) = \frac{\cos(\delta\sqrt{p_r} y) \cosh(\delta\sqrt{p_r} (2h - y)) - \cosh(\delta\sqrt{p_r} y) \cos(\delta\sqrt{p_r} (2h - y))}{\cosh 2\delta\sqrt{p_r} h - \cos 2\delta\sqrt{p_r} h} \]
\[Q_2(y) = \frac{\sin(\delta\sqrt{p_r} y) \sin(\delta\sqrt{p_r} (2h - y)) - \sin(\delta\sqrt{p_r} y) \sinh(\delta\sqrt{p_r} (2h - y))}{\cosh 2\delta\sqrt{p_r} h - \cos 2\delta\sqrt{p_r} h} \]
The normal thrust generated on the plate \(y = 0 \), due to the cross-viscosity \(\mu_c \) is
\[\rho f \frac{\partial f}{\partial y}(y = 0) = 2\mu_c (\delta)^3 h^2 \frac{\cos 2\delta h - \cosh 2\delta h}{(\cos 2\delta h + \cosh 2\delta h)^2} \left[(\sin 2\delta h - \sin 2\delta h)(1 - \cos 2\sigma t) - \right] \]
\[(\sin 2\delta h + \sin 2\delta h) \sin 2\sigma t \]
and the transverse force generated perpendicular to plate fluctuations is

\[
\rho f_z / (y = 0) = 2 \mu_0 \alpha_s \mu_e (\delta)^3 \sqrt{p_r} \left(\frac{\cos 2\delta \hbar - \cosh 2\delta \hbar}{(\cos 2\delta \hbar + \cosh 2\delta \hbar)(\cos 2\delta \hbar \sqrt{p_r} - \cosh 2\delta \hbar \sqrt{p_r})} \right)
\]

\[
\left[\frac{(\sin 2\delta \hbar \sqrt{p_r} - \sinh 2\delta \hbar \sqrt{p_r}) \sin \sigma}{(\sin 2\delta \hbar \sqrt{p_r} + \sinh 2\delta \hbar \sqrt{p_r}) \sin \sigma \cos \sigma} \right]
\]

\[
\sqrt{p_r} \left[\frac{\sin 2\delta \hbar - \sinh 2\delta \hbar}{\cos 2\delta \hbar + \cosh 2\delta \hbar} \sin \sigma (\sin \sigma - \cos \sigma) \right]
\]

III. Results and Discussions

The Graphs shown below are generated using MATLAB Code for the fixed values $\mu = 1$, $\nu = 1$, $\delta = 1$ and $c = 1$. Fig.2 and Fig.3 shows the variations of velocity profiles with the different values of time parameter(t). It can be noted that the fluid velocity is fluctuating with the period ($= \frac{2\pi}{\sigma}$). In Fig.2, it is observed that the velocity profile variations are oscillating with the frequency $\sigma = 1$ (i.e. the velocity of the fluid is oscillating with the period 2π). It is also noticed from the Fig.3 that the velocity profile variations are oscillating with the frequency $\sigma = 2$ (i.e. the velocity is oscillating with the period π).

![Graph 2: Velocity versus t, $\sigma = 1$](image1)

![Graph 3: Velocity versus t, $\sigma = 2$](image2)

The temperature distribution variations with different values of time parameter(t) and prandtl number(p_r) are illustrated in Fig.5, Fig.6 and Fig.7. It shows that the temperature distributions moving towards centre for the values increases from $t = 0$ to $t = \frac{\pi}{2}$ and the temperature distributions shifting towards centre from down for the values increases from $t = \pi$ to $t = \frac{3\pi}{2}$. The temperature distribution variations with the various values of prandtl number are shown in Fig.7. This shows that the temperature of the fluid decreases as the values of prandtl number(p_r) increases from 1 to 3.
IV. Conclusion

The present investigation deals with an unsteady flow of a thermo-viscous incompressible fluid of finite depth with an oscillating bottom. The following conclusions are drawn from the present study.

- It is noticed that the upward thrust \(\rho f_1 \) vanishes for Reiner Rivlin coefficient of viscosity \(\mu_c \) is zero and the transverse force \(\rho f_2 \) perpendicular to the flow direction is vanishes for thermo-viscosity coefficient \(\alpha_8 \) is zero.
- Temperature of the fluid decreases as increases of Prandtl number \(p_r \).
- Temperature of the fluid increases as increases of time parameter \(t \).
References

