Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IFSL > IFSL Volume 15 > The Unsteady Flow of a Fluid of Finite Depth with...
< Back to Volume

The Unsteady Flow of a Fluid of Finite Depth with an Oscillating Bottom

Full Text PDF

Abstract:

In this paper, the unsteady flow of a fluid of finite depth with an oscillating bottom is examined. The flow is assumed in the absence of viscous dissipation. The governing equations of the flow are decoupled in the velocity and temperature fields. The velocity and temperature fields have been obtained analytically. The effects of various material parameters on these fields have been discussed with the help of graphical illustrations. It is noticed that the upward thrust (ρfy) vanishes when Reiner Rivlin coefficient of viscosity (μc) is zero and the transverse force (ρfz) perpendicular to the flow direction vanishes for thermo-viscosity coefficient (α8) is zero. The external forces generated perpendicular to the flow direction is a special feature of thermo-viscous fluid when compared to the other type of fluids.

Info:

Periodical:
International Frontier Science Letters (Volume 15)
Pages:
1-8
Citation:
N. Pothanna and P. Aparna, "The Unsteady Flow of a Fluid of Finite Depth with an Oscillating Bottom", International Frontier Science Letters, Vol. 15, pp. 1-8, 2020
Online since:
February 2020
Export:
Distribution:
References:

[1] K. Anuradha, On steady and unsteady flows of thermo-viscous Fluids,, Ph. D thesis , J.N.T.U. Hyderabad, (2006).

[2] A.E. Green and P.M. Naghdi , A dynamical theory of interacting Continua, , Int. J. Engg. Sci., vol.3, pp.231-241, (1965).

[3] A.E. Green and P.M. Naghdi, A new thermo-viscous theory for fluids,, Journal of Non-Newtonian Fluid Mechanics, vol. 56, No.3, pp.289-306, March (1995).

DOI: https://doi.org/10.1016/0377-0257(94)01288-s

[4] I. L. Animasaun, Dynamics of Unsteady MHD Convective Flow with Thermophoresis of Particles and Variable Thermo-Physical Properties past a Vertical Surface Moving through Binary Mixture,, Open Journal of Fluid Dynamics, vol.5, pp.106-120, (2015).

DOI: https://doi.org/10.4236/ojfd.2015.52013

[5] P.D. Kelly, Some viscometric flows of incompressible thermo-viscous fluids,, Int. J. Engg. sci., vol.2, pp.519-537, (1965).

[6] S.L. Koh and A. C. Eringin, On the foundations of non-linear thermo-elastic fluids,, Int. J. Engg. Sci., vol.1, pp.199-229, (1963).

[7] O.K. Koriko, A.J. Omowaye, I.L. Animasaun, I.O. Babatunde, Boundary Layer Analysis of Exothermic and Endothermic Kind of Chemical Reaction in the Flow of Non-Darcian Unsteady Micropolar Fluid Along an Infinite Vertical Surface,, International Journal of Engineering Research in Africa, vol.28, p.90 – 101, (2017).

DOI: https://doi.org/10.4028/www.scientific.net/jera.28.90

[8] S. S. Motsa, I. L. Animasaun, Paired Quasi-Linearization Analysis of Heat Transfer in Unsteady Mixed Convection Nano fluid Containing Both Nanoparticles and Gyrotactic Microorganisms Due to Impulsive Motion,, Journal of Heat Transfer, vol.138(11), pp.114503-8, (2016).

DOI: https://doi.org/10.1115/1.4034039

[9] S. S. Motsa, I. L. Animasaun , Unsteady Boundary Layer Flow over a Vertical Surface due to Impulsive and Buoyancy in the Presence of Thermal-Diffusion and Diffusion-Thermo using Bivariate Spectral Relaxation Method,, Journal of Applied Fluid Mechanics vol.9(5), p.2605 – 2619, (2016).

DOI: https://doi.org/10.18869/acadpub.jafm.68.236.25597

[10] R. Muthuraj and S. Srinivas, Flow of a Thermo-viscous Fluid through an Annular Tube with Constriction,, Defence Science Journal, vol. 57, No. 5, pp.653-659, September (2007).

DOI: https://doi.org/10.14429/dsj.57.1798

[11] E. Nagaratnam, Some steady and unsteady flows of thermo- viscous fluids,, Ph. D thesis, J.N.T.U Hyderabad, (2006).

[12] P.Nageswara Rao, Some problems in thermo-viscous fluid Dynamics,, Ph. D thesis, K.U. Warangal, (1979).

[13] P.Nageswara rao and N.Ch. Pattabhi Ramacharyulu, Steady flow of a second order thermo- viscous fluid over an infinite plate,, Proc.Ind.Acad.Sci., vol.88A, Part III No.2, pp .157-162, (1979).

DOI: https://doi.org/10.1007/bf02871612

[14] P.Nageswara rao and N.Ch. Pattabhi Ramacharyulu, Steady flow of a thermo-viscous fluid through straight tubes,, Journal of Ind. Inst. Sci. , vol. 61(B), pp.89-102, June (1979).

[15] P.Nageswara rao and N.Ch. Pattabhi Ramacharyulu, A note on steady slow motion of thermo-viscous fluid through a circular tube,, Indian journal of pure and appl. Math., vol.11(4), pp.487-491, April (1980).

[16] N.Ch. Pattabhi Ramacharyulu, Problems in the steady of non-Newtonian Fluid Dynamics,, Ph. D thesis, O. U. Hyderabad, (1966).

[17] N. Pothanna, P.Nageswara rao and N.Ch. Pattabhi Ramacharyulu, Flow of slightly thermo-viscous fluid in a porous slab bounded between two permeable parallel plates,, Int. J. Adv. Appl. Math. and Mech., vol.2(3), p.1 – 9, (2015).

DOI: https://doi.org/10.7726/jac.2015.1003

[18] N. Pothanna, J. Srinivas, P.Nageswara rao and N.Ch. Pattabhi Ramacharyulu, Linearization of thermo-viscous fluid in a porous slab bounded between two fixed permeable horizontal parallel plates in the absence of thermo-mechanical interaction coefficient,, International Journal of Modern Trends in Engineering and Research, vol.1(5). pp.412-424, (2014).

DOI: https://doi.org/10.7726/jac.2015.1003

[19] J. Srinivas, N. Pothanna, P.Nageswara rao and N.Ch. Pattabhi Ramacharyulu, Slow steady motion of a thermo-viscous fluid between two parallel plates with constant pressure and temperature gradients,, International Journal of Research in Engineering and Technology, vol.2(11), pp.294-299, (2013).

DOI: https://doi.org/10.15623/ijret.2013.0211045
Show More Hide
Cited By:

[1] V. Bulinda, G. Kang’ethe, P. Kiogora, "Analysis of Magnetohydrodynamics Flow of Incompressible Fluids over Oscillating Bottom Surface with Heat and Mass Transfer", International Journal of Mathematics and Mathematical Sciences, Vol. 2020, p. 1, 2020

DOI: https://doi.org/10.1155/2020/4054578

[2] D. Ji-miao, L. Hui-shu, X. Shuo, L. Jiang, S. Ting-ao, L. Ke-yu, Y. Hao, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, 2020

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[3] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, 2020

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[4] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, 2020

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[5] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, 2020

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[6] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, Vol. 7, p. 335, 2021

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[7] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, Vol. 7, p. 335, 2021

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[8] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, Vol. 7, p. 335, 2021

DOI: https://doi.org/10.1016/j.petlm.2020.10.005

[9] J. Duan, H. Liu, S. Xu, J. Li, T. Shen, K. Lin, H. Yan, "Numerical modelling for leak oil flow in tunnel of the cave storage", Petroleum, Vol. 7, p. 335, 2021

DOI: https://doi.org/10.1016/j.petlm.2020.10.005
Show More Hide