This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] V. Szebehely, Theory of orbits. The restricted problem of three- bodies, Academic Press, New York, (1967).
[2] V. A. Brumberg, Relativistic Celestial Mechanics, Nauka, Moscow, USSR, (1972).
[3] K.B. Bhatnagar, P.P. Hallan, Existence and stability of in the relativistic restricted three-body problem, Celest. Mech. Dyn. Astron. 69 (1998) 271-281.
[4] C.N. Douskos, E.A. Perdios, On the stability of equilibrium points in the relativistic restricted three-body problem, Celest. Mech. Dyn. Astron. 82 (2002) 317-321.
[5] M.K. Ahmed, F.A. Abd El-Salam, S.E. Abd El-Bar, On the stability of triangular Lagrangian equilibrium points in the relativistic restricted three-body problem, American Journal of Applied Sciences. 3 (2006) 1993-(1998).
DOI: https://doi.org/10.3844/ajassp.2006.1993.1998[6] O. Ragos et al., On the equilibrium points of the relativistic restricted three-body problem, Nonlinear Analysis. 47 (2001) 3413-3418.
DOI: https://doi.org/10.1016/s0362-546x(01)00456-4[7] S.E. Abd El-Bar, F.A. Abd El-Salam, Computation of the locations of the libration points in the relativistic restricted three-body problem, American Journal of Applied sciences. 9(5) (2012) 659-665.
DOI: https://doi.org/10.3844/ajassp.2012.659.665[8] S. E Abd El-Bar, F.A. Abd El-Salam, Analytical and semi analytical treatment of the collinear points in the photogravitational relativistic R3BP, Mathematical Problems in Engineering. 2013 (2013).
DOI: https://doi.org/10.1155/2013/794734[9] F.A. Abd El-Salam, S.E. Abd El-Bar, On the triangular equilibrium points in the photogravitational relativistic restricted three-body problem, Astrophys. Space Sci. 349 (2014) 125-135.
DOI: https://doi.org/10.1007/s10509-013-1629-5[10] D.A. Katour, F.A. Abd El-Salam, M.O. Shaker, Relativistic restricted three-body problem with oblateness and photo-gravitational corrections to triangular equilibrium points, Astrophys. Space Sci. 351(1) (2014) 143-149.
DOI: https://doi.org/10.1007/s10509-014-1826-x[11] S.E. Abd El- Bar, F.A. Abd El Salam, M. Rasseem, Perturbed location of point in the photogravitational relativistic restricted three-body problem (R3BP) with oblate primaries, Canadian journal of physics. 93(3) (2015) 300-311.
DOI: https://doi.org/10.1139/cjp-2014-0346[12] J. Singh, N. Bello, Motion around L4 in the perturbed relativistic R3BP, Astrophys. Space Sci. 351 (2014) 491-497.
DOI: https://doi.org/10.1007/s10509-014-1870-6[13] J. Singh, N. Bello, Effect of radiation pressure on the stability of L4, 5 in the R3BP, Astrophys. Space Sci. 351 (2014) 483-490.
DOI: https://doi.org/10.1007/s10509-014-1858-2[14] J. Singh, N. Bello, Existence and stability of triangular points in the relativistic R3BP when the primaries are triaxial rigid bodies and sources of radiation, Journal of Astrophysics and Aerospace Technology. 4(1) (2016).
DOI: https://doi.org/10.4172/2329-6542.1000131[15] S.W. McCuskey, Introduction to celestial mechanics, Addision-Wesley, (1963).
[16] R.K. Sharma, P.V.S. Rao, Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids, Celest. Mech. 12 (1975) 189-201.
DOI: https://doi.org/10.1007/bf01230211[17] C.D. Murray, S.F. Dermott, Solar System Dynamics, Cambridge University Press, (1999).
[1] A. Hussain, A. Umar, J. Singh, "Investigation of the Stability of a Test Particle in the Vicinity of Collinear Points with the Additional Influence of an Oblate Primary and a Triaxial-Stellar Companion in the Frame of ER3BP", International Frontier Science Letters, Vol. 13, p. 12, 2018
DOI: https://doi.org/10.18052/www.scipress.com/IFSL.13.12[2] A. Hussain, A. Umar, "Generalized Out-of-Plane Equilibrium Points in the Frame of Elliptic Restricted Three-Body Problem: Impact of Oblate Primary and Luminous-Triaxial Secondary", Advances in Astronomy, Vol. 2019, p. 1, 2019
DOI: https://doi.org/10.1155/2019/3278946[3] J. Gyegwe, A. Vincent, A. Perdiou, Approximation and Computation in Science and Engineering, Vol. 180, p. 397, 2022
DOI: https://doi.org/10.1007/978-3-030-84122-5_21