Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

IFSL > Volume 11 > Investigations on the Relativistic Interactions in...
< Back to Volume

Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles

Full Text PDF

Abstract:

Energy levels of one electron atoms have been re-examined by applying an alternative perturbative scheme in solving the modified Dirac equation (m.d.e.) for the modified Yukawa potential model with a arbitrary spin-orbit quantum number (see equation in the paper) by means Bopp’s shift method instead to solving (m.d.e.) with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS). It is observed that the obtained corrections of energies are depended on the new discrete atomic quantum numbers (see equation in the paper) under spin-symmetry and pseudospin symmetry and two infinitesimal parameters (see equation in the paper) which induced by position-position noncommutativity. Furthermore, in limit of parameters (see equation in the paper), the new energy equations for modified Yukawa potential are consistent with the results of ordinary relativistic quantum mechanics for ordinary Yukawa potential. Keywords: Yukawa potential, noncommutative space, star product, Bopp’s shift method and Dirac equation.

Info:

Periodical:
International Frontier Science Letters (Volume 11)
Pages:
29-44
DOI:
10.18052/www.scipress.com/IFSL.11.29
Citation:
A. Maireche "Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles", International Frontier Science Letters, Vol. 11, pp. 29-44, 2017
Online since:
Mar 2017
Export:
Distribution:
References:

[1] M.K. Bahar, F. Yasuk, Fermionic particles with position-dependent mass in the presence of inversely quadratic Yukawa potential and tensor interaction, Pramana Journal of Physics. 80(2) (2013) 187-197.

DOI: 10.1007/s12043-012-0483-2

[2] M. Hamzavi, A. A. Rajabi, H. Hassanabadi, Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including Coulomb-like tensor interaction via asymptotic iteration method, Physics Letters A. 374(42) (2010).

DOI: 10.1016/j.physleta.2010.08.065

[3] H. Akcay, C. Tezcan, Exact solutions of the Dirac equation with harmonic oscillator potential including a Coulomb-like tensor interaction, International Journal of Modern Physics C. 20(6) (2010) 931-940.

DOI: 10.1142/s0129183109014084

[4] H. Akcay, Dirac Equation with scalar and vector quadratic potentials and Coulomb-like tensor potential, Physics Letters A. 373(6) (2009) 616-620.

DOI: 10.1016/j.physleta.2008.12.029

[5] E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar, Exact solutions of the Dirac equation with Poschl-Teller double-ring shaped Coulomb potential via the Nikiforov-Uvarov method, Chinese Physics B. 22(3) (2013) 030302-1-030302-5.

DOI: 10.1088/1674-1056/22/3/030302

[6] C. Berkdemir, Y. F. Cheng, On the exact solutions of the Dirac equation with a novel angle-dependent potential, Physica Scripta. 79(3) (2009) 035003-035010.

DOI: 10.1088/0031-8949/79/03/035003

[7] B.I. Ita, A.I. Ikeuba, Solutions of the Dirac equation with gravitational plus exponential potential, Applied Mathematics. 4 (2013) 1-6.

DOI: 10.4236/am.2013.410a3001

[8] J. Mawhin, A. Ronveaux, Schrödinger and Dirac equations for the hydrogen atom and Laguerre polynomials, Arch. Hist. Exact Sci. 64 (2010) 429–460.

DOI: 10.1007/s00407-010-0060-3

[9] B. Biswas, S. Debnath, Bound states of the Dirac-Kratzer-Fues problem with spin and pseudo-spin symmetry via Laplace transform approach, Bulg. J. Phys. 43 (2016) 89–99.

[10] F. Pakdel, A.A. Rajabi, Investigation of the nuclear system using the D-dimensional wave equation, Chinese Journal of Physics. 54 (2016) 385-390.

DOI: 10.1016/j.cjph.2016.04.023

[11] K.J. Oyewumi, C.O. Akoshile, Bound-state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry, Eur. Phys. J. A. 45 (2010) 311–318.

DOI: 10.1140/epja/i2010-11007-0

[12] H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Relativistic symmetry of the Dirac equation and Tietz potential, Eur. Phys. J. Plus. 123 (2012) 31.

DOI: 10.1140/epjp/i2012-12031-1

[13] M. R. Setare, S. Haidari, Spin symmetry of the Dirac equation with the Yukawa potential, Phys. Scr. 81 (2010) 065201.

DOI: 10.1088/0031-8949/81/06/065201

[14] A. Soylu, O. Bayrak, I. Boztosun, An approximate solution of the Dirac-Hulthen problem with pseudospin and spin symmetry for any k state, J. Math. Phys. 48(8) (2007) 082302.

DOI: 10.1063/1.2768436

[15] C.A. Onate, J.O. Ojonubah, Relativistic and nonrelativistic solutions of the generalized Pӧschl-Teller and hyperbolical potentials with some thermodynamic properties, Int. J. Mod. Phys. E. 24 (2015) 1550020.

DOI: 10.1142/s0218301315500202

[16] S.M. Ikhdair, R. Sever, Approximate analytical solutions of the generalized Woods-Saxon potentials including the spin-orbit coupling term and spin symmetry, Cent. Eur. J. Phys. 8 (2010) 665.

DOI: 10.2478/s11534-009-0118-5

[17] S.M. Ikhdair, R. Sever, Approximate eigenvalue and eigenfunctions solutions for the generalized Hulthén potential with any angular momentum, J. Math. Chem. 42(3) (2007) 461-471.

DOI: 10.1007/s10910-006-9115-8

[18] M. Eshghia, S.M. Ikhdair, Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method, Chin. Phys. B. 23(12) (2014) 120304.

DOI: 10.1088/1674-1056/23/12/120304

[19] S.M. Ikhdair; M. Hamzavi, Approximate relativistic bound state solutions of the Tietz–Hua rotating oscillator for any κ-state, Few-Body Syst. 53 (2012) 473–486.

DOI: 10.1007/s00601-012-0470-7

[20] M. Hamzavi, A.A. Rajabi, Solution of Dirac equation with Killingbeck potential by using wave function ansatz method under spin symmetry limit, Commun. Theor. Phys. 55(1) (2011) 35–37.

DOI: 10.1088/0253-6102/55/1/07

[21] H. Goudarzi, M. Sohbati, S. Zarrin, Solution of Dirac equation with spin and pseudospin symmetry for an anharmonic oscillator, Journal of Mathematical Physics. 52 (2011) 013506.

DOI: 10.1063/1.3532930

[22] M.R. Shojaei et al., Energy levels of spin-1/2 particles with Yukawa interaction, Journal of Modern Physics. 5 (2014) 773-780.

[23] A. Maireche, A study of Schrödinger equation with inverse sextic potential in 2-dimensional non-commutative space, Afr. Rev Phys. 9 (2014) 185-193.

[24] A. Maireche, Spectrum of Schrödinger equation with H.L.C. potential in non-commutative two-dimensional real space, Afr. Rev Phys. 9 (2014) 479-485.

[25] A. Maireche, Deformed bound states for central fraction power potential: non relativistic Schrödinger equation, Afr. Rev Phys. 10 (2015) 97-103.

[26] A. Maireche, Spectrum of hydrogen atom ground state counting quadratic term in Schrödinger equation, Afr. Rev Phys. 10 (2015) 177-183.

[27] A. Maireche, Atomic spectrum for Schrödinger equation with rational spherical type potential in non commutative space and phase, Afr. Rev Phys. 10: 0046 (2015) 373-381.

[28] A. Maireche, A complete analytical solution of the Mie-type potentials in non- commutative 3-dimensional spaces and phases symmetries, Afr. Rev Phys. 11: 0015 (2016) 111-117.

[29] A. Maireche, A new relativistic study for interactions in one-electron atoms (spin ½ particles) with modified Mie-type potential, J. Nano- Electron. Phys. 8(4) (2016) 04027-1 - 04027-9.

DOI: 10.21272/jnep.8(4(1)).04027

[30] A. Maireche, A new nonrelativistic investigation for interactions in one-electron atoms with modified inverse–square potential: noncommutative two and three dimensional space phase solutions at Planck's and nano-scales, J. Nanomed. Res. 4(3) (2016).

DOI: 10.15406/jnmr.2016.04.00090

[31] A. Maireche, Investigations on the relativistic interactions in one-electron atoms with modified anharmonic oscillator, J. Nanomed. Res. 4(4) (2016) 00097-00112.

DOI: 10.15406/jnmr.2016.04.00097

[32] A. Maireche, A new nonrelativistic investigation for interactions in one-electron atoms with modified vibrational-rotational analysis of supersingular plus quadratic potential: extended quantum mechanics, J. Nano- Electron. Phys. 8(4) (2016).

DOI: 10.21272/jnep.8(4(2)).04076

[33] A. Maireche, New exact energy eigen-values for (MIQYH) and (MIQHM) central potentials: non-relativistic solutions, Afr. Rev Phys. 11 (2016) 175-185.

[34] A. Maireche, New exact solution of the bound states for the potential family V(r)=A/r2-B/r+Crk (k=0, -1, -2) in both noncommutative three dimensional spaces and phases: non relativistic quantum mechanics, International Letters of Chemistry, Physics and Astronomy. 58 (2015).

DOI: 10.18052/www.scipress.com/ilcpa.58.164

[35] A. Maireche, A new approach to the non relativistic Schrödinger equation for an energy-depended potential in both noncommutative three dimensional spaces and phases, International Letters of Chemistry, Physics and Astronomy. 60 (2015) 11-19.

DOI: 10.18052/www.scipress.com/ilcpa.60.11

[36] A. Maireche, A new study to the Schrödinger equation for modified potential in nonrelativistic three dimensional real spaces and phases, International Letters of Chemistry, Physics and Astronomy. 61 (2015) 38-48.

DOI: 10.18052/www.scipress.com/ilcpa.61.38

[37] A. Maireche, A new nonrelativistic investigation for the lowest excitations states of interactions in one-electron atoms, Muonic, Hadronic and Rydberg atoms with modified inverse power potential, International Frontier Science Letters. 9 (2016).

DOI: 10.18052/www.scipress.com/ifsl.9.33

[38] A. Maireche, Quantum Hamiltonian and spectrum of Schrödinger equation with companied harmonic oscillator potential and it's inverse in three dimensional noncommutative real space and phase, J. Nano- Electron. Phys. 7(4) (2015) 04021-104021-7.

[39] A. Maireche, New relativistic atomic mass spectra of quark (u, d and s) for extended modified Cornell potential in Nano and Plank's scales, J. Nano- Electron. Phys. 8(1) (2016) 01020-1 - 01020-7.

DOI: 10.21272/jnep.8(1).01020

[40] A. Maireche, D. Imane, A new nonrelativistic investigation for spectra of heavy quarkonia with modified Cornell potential: noncommutative three dimensional space and phase space solutions, J. Nano- Electron. Phys. 8(3) (2016) 03024.

DOI: 10.21272/jnep.8(3).03025

[41] A. Maireche, New bound state energies for spherical quantum dots in presence of a confining potential model at Nano and Plank's scales, NanoWorld J. 1(4) (2016) 122-129.

DOI: 10.17756/nwj.2016-016

[42] A. Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of non-commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 060-072.

[43] A. Maireche, New quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases, Lat. Am. J. Phys. Educ. 9(1) (2015) 1301.

[44] A. Maireche, Nonrelativistic atomic spectrum for companied harmonic oscillator potential and its inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. 56 (2015) 1-9.

DOI: 10.18052/www.scipress.com/ilcpa.56.1

[45] A. Maireche, Deformed quantum energy spectra with mixed harmonic potential for nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7(2) (2015) 02003-1 - 02003-6.

[46] A. Maireche, A recent study of quantum atomic spectrum of the lowest excitations for Schrödinger equation with typical rational spherical potential at Planck's and Nanoscales, J. Nano- Electron. Phys. 7(3) (2015) 03047-1 - 03047-7.

[47] A. Maireche, The nonrelativistic ground state energy spectra of potential counting Coulomb and quadratic terms in non-commutative two dimensional real spaces and phases, J. Nano- Electron. Phys. 8(1) (2016) 01021-1 - 01021-6.

DOI: 10.21272/jnep.8(1).01021

[48] A. Maireche, New theoretical study of quantum atomic energy spectra for lowest excited states of central (PIHOIQ) potential in noncommutative spaces and phases symmetries at Plan's and Nanoscales, J. Nano- Electron. Phys. 8(2) (2016).

DOI: 10.21272/jnep.8(2).02027

[49] A. Maireche, A new nonrelativistic atomic energy spectrum of energy dependent potential for heavy quarkouniom in noncommutative spaces and phases symmetries, J. Nano- Electron. Phys. 8(2) (2016) 02046-1 - 02046-6.

DOI: 10.21272/jnep.8(2).02046

[50] A. Maireche, Quantum Schrödinger equation with Octic potential in non-commutative two-dimensional complex space, Life Sci. J. 11(6) (2014) 353-359.

[51] A.F. Dossa, G.Y.H. Avossevou, Noncommutative phase space and the two dimensional quantum dipole in background electric and magnetic fields, Journal of Modern Physics. 4 (2013) 1400-1411.

DOI: 10.4236/jmp.2013.410168

[52] J. Mamat; S. Dulat, H. Mamatabdulla, Landau-like atomic problem on a non-commutative phase space, Int. J. Theor. Phys. 55 (2016) 2913–2918.

DOI: 10.1007/s10773-016-2922-1

[53] Y. Xiao; Z. Long, S. Cai, Klein-Gordon oscillator in noncommutative phase space under a uniform magnetic field, Int. J. Theor. Phys. 50 (2011) 3105-3111.

DOI: 10.1007/s10773-011-0811-1

[54] A.E.F. Djemaï, H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41 (2004) 837.

DOI: 10.1088/0253-6102/41/6/837

[55] A. Boumali, H. Hassanabadi, The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field, Eur. Phys. J. Plus. 128 (2013) 124.

DOI: 10.1140/epjp/i2013-13124-y

[56] S. Dulat, K. Li, The Aharonov–Casher effect for spin-1 particles in non-commutative quantum mechanics, Eur. Phys. J. C. 54 (2008) 333–337.

DOI: 10.1140/epjc/s10052-008-0522-9

[57] T. Curtright; D. Fairlie, C.K. Zachos, Features of time independent Wigner functions, Phys. Rev. D. 58 (1998) 025002.

DOI: 10.1103/physrevd.58.025002

[58] J. Gamboa, M. Loewe, J.C. Rojas, Noncommutative quantum mechanics, Phys. Rev. D. 64 (2001) 067901.

[59] L. Mezincescu, Star operation in quantum mechanics. Available: arXiv: hep-th/0007046v2.

[60] Y. Yuan et al., Spin-1/2 relativistic particle in a magnetic field in NC phase space, Chinese Physics C. 34(5) (2010) 543.

[61] S. Cai, T. Jing, Dirac oscillator in noncommutative phase space, Int. J. Theor. Phys. 49(8) (2010) 1699-1705.

DOI: 10.1007/s10773-010-0349-7

[62] J. Lee, Star products and the Landau problem, Journal of the Korean Physical Society. 47(4) (2005) 571-576.

[63] Y. Zu-Hua et al., DKP oscillator with Spin-0 in three-dimensional noncommutative phase space, Int. J. Theor. Phys. 49 (2010) 644-657.

[64] J. Mamat, S. Dulat, H. Mamatabdulla, Landau-like atomic problem on a non-commutative phase space, Int J Theor Phys; 55 (2016) 2913–2918.

DOI: 10.1007/s10773-016-2922-1

[65] B. Mirza et al., Relativistic oscillators in a noncommutative space and in a magnetic field, Commun. Theor. Phys. 55 (2011) 405-409.

DOI: 10.1088/0253-6102/55/3/06

[66] Y. Xiao; Z. Long, S. Cai, Klein-Gordon oscillator in noncommutative phase space under a uniform magnetic field, Int. J. Theor. Phys. 50 (2011) 3105-3111.

DOI: 10.1007/s10773-011-0811-1

[67] A. Al-Jamel, Heavy quarkonia with Cornell potential on noncommutative space, Journal of Theoretical and Applied Physics. 5(1) (2011) 21-24.

[68] H. Hassanabadi, F. Hoseini, S. Zarrinkamar, A generalized interaction in noncommutative space: both relativistic and nonrelativistic fields, Eur. Phys. J. Plus. 130 (2015) 200.

DOI: 10.1140/epjp/i2015-15200-8

[69] W.S. Chung, Two dimensional non-commutative space and Rydberg atom mode, Int. J. Theor. Phys. 54 (2015) 1840-1849.

DOI: 10.1007/s10773-014-2389-x

[70] P. Polychronakos, Quantum mechanics on the noncommutative plane and sphere, Physics Letters B. 505 (2001) 267.

[71] A.E.F. Djemei, H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41 (2004) 837-844.

DOI: 10.1088/0253-6102/41/6/837

[72] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publications, New York, (1965).

DOI: 10.2307/1266136
Show More Hide