This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] E. MAGHSOODI, H. HASSANABADI, O. AYDOǦDU, DIRAC PARTICLES IN THE PRESENCE OF THE YUKAWA POTENTIAL PLUS A TENSOR INTERACTION IN SUSYQM FRAMEWORK, PHYSICA SCRIPTA. 86(1) (2012) 015005.
DOI: https://doi.org/10.1088/0031-8949/86/01/015005[2] E. MAGHSOODI ET AL., RELATIVISTIC SYMMETRIES OF THE DIRAC EQUATION UNDER THE NUCLEAR WOODS–SAXON POTENTIAL, PHYSICA SCRIPTA. 85(5) (2012) 055007.
DOI: https://doi.org/10.1088/0031-8949/85/05/055007[3] M. Hamzavi, S.M. Ikhdair, B.I. Ita, Approximate spin and pseudospin solutions to the Dirac equation for the inversely quadratic Yukawa potential and tensor interaction, Physica Scripta. 85(4) (2012) 045009.
DOI: https://doi.org/10.1088/0031-8949/85/04/045009[4] S.M. Ikhdair, B.J. Falaye, Approximate relativistic bound states of a particle in Yukawa field with Coulomb tensor interaction, Physica Scripta. 87(3) (2013) 035002.
DOI: https://doi.org/10.1088/0031-8949/87/03/035002[5] S.M. Ikhdair, Approximate -state solutions of the Dirac equation in spatially dependent mass for the Eckart potential including the Yukawa tensor interaction, Physica Scripta. 88(6) (2013) 065007.
[6] S.H. Dong, Z.Q. Ma, Exact solutions to the Dirac equation with a Coulomb potential in 2+1 dimensions, Phys. Lett. A. 312 (2003) 78-83.
[7] S. Zarrinkamar, H. Hassanabadi, A.A. Rajabi, Dirac equation for a Coulomb scalar, vector and tensor interaction, Int. J. Mod. Phys. A. 26 (2011) 1011-1018.
[8] K.J. Oyewumi et al., k-state solutions for the fermionic massive spin-1/2 particles interacting with double ring-shaped Kratzer and oscillator potentials, Int. J. Mod. Phys. E. 23 (2014) 1450005.
DOI: https://doi.org/10.1142/s0218301314500050[9] H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Relativistic symmetries of Dirac equation and the Tietz potential, The European Physical Journal Plus. 127(3) (2012) 1-14.
DOI: https://doi.org/10.1140/epjp/i2012-12031-1[10] M.R. Setare, S. Haidari, Spin symmetry of the Dirac equation with the Yukawa potential, Physica Scripta. 81 (2010) 065201.
DOI: https://doi.org/10.1088/0031-8949/81/06/065201[11] A. Soylu, O. Bayrak, I. Boztosun, An approximate solution of the Dirac-Hulth_n problem with pseudospin and spin symmetry for any k state, J. Math. Phys. 48 (2007) 082302.
DOI: https://doi.org/10.1063/1.2768436[12] C.A. Onate, J.O. Ojonubah, Relativistic and nonrelativistic solutions of the generalized Pӧschl- Teller and hyperbolical potentials with some thermodynamic properties, Int. J. Mod. Phys. E. 24(03) (2015) 1550020.
DOI: https://doi.org/10.1142/s0218301315500202[13] S.M. Ikhdair, R. Sever, Approximate analytical solutions of the generalized Woods-Saxon potentials including the spin-orbit coupling term and spin symmetry, Cent. Eur. J. Phys. 8(4) (2010) 652-666.
DOI: https://doi.org/10.2478/s11534-009-0118-5[14] S.M. Ikhdair, R. Sever, Approximate Eigenvalue and Eigenfunctions Solutions for the Generalized Hulthén Potential with any Angular Momentum, Journal of Mathematical Chemistry. 42(3) (2007) 461-471.
[15] M. Eshghia, S.M. Ikhdair, Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method, Chin. Phys. B. 23(12) (2014) 120304.
[16] B. Biswas, S. Debnath, Bound States of the Dirac-Kratzer-Fues Problem with Spin and Pseudo-Spin Symmetry via Laplace Transform Approach, Bulg. J. Phys. 43 (2016) 89–99.
[17] H.S. Snyder, Quantized Space-Time, Phys. Rev. 71(1) (1947) 38-41.
[18] A. Connes, Noncommutative differential geometry, Publications mathématiques de l'IHÉS, 62(1) (1985) 41-144.
[19] A. Maireche, Atomic Spectrum for Schrödinger Equation with Rational Spherical Type Potential in Non-commutative Space and Phase, Afr. Rev Phys. 10 (2015) 373-381.
[20] A. Maireche, Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation, Afr. Rev Phys. 10 (2015) 177-183.
[21] A. Maireche, Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger Equation, Afr. Rev Phys. 10 (2015) 97-103.
[22] A. Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non-commutative Two-dimensional Real Space, Afr. Rev Phys. 9 (2014) 479-485.
[23] A. Maireche, A Study of Schrödinger Equation with Inverse Sextic Potential in 2-dimensional Non-commutative Space, Afr. Rev Phys. 9 (2014) 185-193.
[24] A. Maireche, Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. 56 (2015) 1-9.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.56.1[25] A. Maireche, New Exact Solution of the Bound States for the Potential Family V(r)=A/r2-B/r+Crk (k=0, -1, -2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics, International Letters of Chemistry, Physics and Astronomy. 58 (2015).
[26] A. Maireche, A New Approach to the Non Relativistic Schrödinger Equation for an Energy-Depended Potential in both Noncommutative Three Dimensional Spaces and Phases, International Letters of Chemistry, Physics and Astronomy. 60 (2015) 11-19.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.60.11[27] A. Maireche, A New Study to the Schrödinger Equation for Modified Potential V(r)=ar2+ br-4+cr-6 in Nonrelativistic Three Dimensional Real Spaces and Phases, International Letters of Chemistry, Physics and Astronomy. 61 (2015) 38-48.
[28] A. Maireche, A New Nonrelativistic Investigation for the Lowest Excitations States of Interactions in One-Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power Potential, International Frontier Science Letters. 9 (2016).
DOI: https://doi.org/10.18052/www.scipress.com/ifsl.9.33[29] A. Maireche, Deformed Quantum Energy Spectra with Mixed Harmonic Potential for Nonrelativistic Schrödinger equation, J. Nano-Electron. Phys. 7(2) (2015) 02003-1 - 02003-6.
[30] A. Maireche, A Recent Study of Quantum Atomic Spectrum of the Lowest Excitations for Schrödinger Equation with Typical Rational Spherical Potential at Planck's and Nanoscales, J. Nano- Electron. Phys. 7(3) (2015) 03047-1 - 03047-7.
[31] A. Maireche, Quantum Hamiltonian and Spectrum of Schrödinger Equation with companied Harmonic Oscillator Potential and its Inverse in three Dimensional Noncommutative Real Space and Phase, J. Nano- Electron. Phys. 7(4) (2015) 04021-1 - 04021-7.
[32] A. Maireche, New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank's Scales, J. Nano- Electron. Phys. 8(1) (2016) 01020-1 - 01020-7.
DOI: https://doi.org/10.21272/jnep.8(1).01020[33] A. Maireche, The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quadratic Terms in Non-commutative Two Dimensional Real Spaces and Phases, J. Nano- Electron. Phys. 8(1) (2016) 01021-1 - 01021-6.
[34] A. Maireche, New Theoretical Study of Quantum Atomic Energy Spectra for Lowest Excited States of Central (PIHOIQ) Potential in Noncommutative Spaces and Phases Symmetries at Plan's and Nanoscales, J. Nano- Electron. Phys. 8(2) (2016).
DOI: https://doi.org/10.21272/jnep.8(2).02027[35] A. Maireche, A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries, J. Nano- Electron. Phys. 8(2) (2016) 02046-1 - 02046-6.
DOI: https://doi.org/10.21272/jnep.8(2).02046[36] A. Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of Non-commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 060-072.
[37] A. Maireche, New Bound State Energies for Spherical Quantum Dots in Presence of a Confining Potential Model at Nano and Plank's Scales, NanoWorld J. 1(4) (2016) 120-127.
DOI: https://doi.org/10.17756/nwj.2016-016[38] A. Maireche, Quantum Schrödinger equation with Octic potential in non-commutative two-dimensional complex space, Life Sci J. 11(6) (2014) 353-359.
[39] A. Maireche, New quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases, Lat. Am. J. Phys. Educ. 9(1) (2015) 1301.
[40] A. Maireche, D. Imane, A New Nonrelativistic Investigation for Spectra of Heavy Quarkonia with Modified Cornell Potential: Noncommutative Three Dimensional Space and Phase Space Solutions, J. Nano-Electron. Phys. 8(3) (2016) 03025-1.
DOI: https://doi.org/10.21272/jnep.8(3).03025[41] A. Maireche, A Complete Analytical Solution of the Mie-Type Potentials in Non-commutative 3-Dimensional Spaces and Phases Symmetries, Afr. Rev Phys. 11 (2016) 111-117.
[42] A. Maireche, New Exact Energy Eigen-values for (MIQYH) and (MIQHM) Central Potentials: Non-relativistic Solutions, Afr. Rev Phys. 11 (2016) 175-185.
[43] A. Maireche, A New Relativistic Study for Interactions in One-electron atoms (Spin ½ Particles) with Modified Mie-type Potential, J. Nano-Electron. Phys. 8(4) (2016) 04027-1 - 04027-9.
[44] T. Curtright, D. Fairlie, C.K. Zachos, Features of time independent Wigner functions, Phys. Rev. D. 58(2) (1998) 025002.
DOI: https://doi.org/10.1103/physrevd.58.025002[45] J. Gamboa, M. Loewe, J.C. Rojas, Noncommutative quantum mechanics, Phys. Rev. D. 64(6) (2001) 067901.
[46] L. Mezincescu, Star operation in quantum mechanics, Unpublished paper, arXiv preprint hep-th/0007046v2, (2000).
[47] Y. Yi et al., Spin-1/2 relativistic particle in a magnetic field in NC phase space, Chinese Physics C. 34(5) (2010) 543-547.
[48] A.E.F. Djemei, H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space, Communications in Theoretical Physics. 41(6) (2004) 837-844.
[49] S. Cai, T. Jing, Dirac Oscillator in Noncommutative Phase Space, Int. J. Theor. Phys. 49(8) (2010) 1699-1705.
[50] J. Lee, Star Products and the Landau Problem, Journal of the Korean Physical Society. 47(4) (2005) 571-576.
[51] A.F. Dossa, G.Y.H. Avossevou, Noncommutative phase space and the two dimensional quantum dipole in background electric and magnetic fields, Journal of Modern Physics. 4(10) (2013) 1400-1411.
[52] Z.H. Yang et al., DKP Oscillator with Spin-0 in Three-dimensional Noncommutative Phase Space, Int. J. Theor. Phys. 49 (2010) 644-657.
[53] J. Mamat; S. Dulat, H. Mamatabdulla, Landau-like Atomic Problem on a Non-commutative Phase Space, Int. J. Theor. Phys. 55 (2016) 2913–2918.
[54] B. Mirza et al., Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field, Commun. Theor. Phys. 55 (2011) 405-409.
[55] Y. Xiao; Z. Long, S. Cai, Klein-Gordon Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field, Int. J. Theor. Phys. 50 (2011) 3105-3111.
[56] A. Al-Jamel, Heavy quarkonia with Cornell potential on noncommutative space, Journal of Theoretical and Applied Physics. 5(1) (2011) 21-24.
[57] H. Hassanabadi, F. Hoseini, S. Zarrinkamar, A generalized interaction in noncommutative space: Both relativistic and nonrelativistic fields, Eur. Phys. J. Plus. 130(10) (2015) 1-7.
[58] W.S. Chung, Two Dimensional Non-commutative Space and Rydberg Atom Mode, Int. J. Theor. Phys. 54(6) (2015) 1840-1849.
DOI: https://doi.org/10.1007/s10773-014-2389-x[59] M.M. Nieto, L.M. Simmons Jr., Eigenstates, Coherent States, and Uncertainty Products for the Morse Oscillator, Phys. Rev. A. 19(2) (1979) 438–444.
DOI: https://doi.org/10.1103/physreva.19.438[60] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, (1965).
[61] S.H. Dong, G.H. Sun, The Schrödinger Equation with a Coulomb Plus Inverse-Square Potential in D Dimensions, Phys. Scr. 70(2-3) (2004) 94-97.
DOI: https://doi.org/10.1088/0031-8949/70/2-3/004