This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] V.A. Greshnikov, Y.B. Drobot, Acoustic emission: application in testing of materials and products, Standard Publ., Moscow, (1976).
[2] V.A. Troickij, V.P. Rad'ko, V.T. Bobrov, Nondestructive testing of welded structures quality, Tehnіka, Kiev, Ukrainian SSR, (1986).
[3] O.V. Bazhkov et al., Identification of the source of acoustic emission during deformation and fracture of steel 12X18H10T, Industrial Laboratory. 1 (2010) 33-36.
[4] X.U. Jiang et al., Space-time evolution rules study on acoustic emission location in rock under cyclic loading, Frontiers of Architecture and Civil Engineering in China. 3 (2009) 422-427.
[5] M.I. Sundaresun, M.J. Schulz, A. Ghoshol, Linear location of acoustic emission sources with a single channel distributed sensor, Journal of intelligent material systems and structures. 12 (2001) 689-699.
DOI: https://doi.org/10.1177/104538901320560346[6] N.A. Semashko et al., Acoustic emission in the experimental metal science, Mashinostroenie, Moskow, Russia, (2002).
[7] A.B. Berezin, L.M. Kozinkina, L.M. Pybakova, Acoustic emission and destruction of the plastically deformed metal, Defectoskopia. 3 (2004) 9-14.
[8] A.V. Sharko et al., The impact of changes in dislocation structure on the acoustic characteristics of materials, Interuniversity collection Scientific Notes, Lutsk, Ukraine. 48 (2015) 220-224.
[9] O.V. Abramov, O.M. Gradov, The radiation nonlinear acoustic signaling congestion areas microcracks forming plate defect structures, Materialovedenie. 4 (2004) 2-6.
[10] V.P. Babak., S.F. Philonenko, Mathematical models of assessment and forecasting of products using acoustic emission, Electronics and Informatics. 2 (2000) 62-65.
[11] V.S. Boiko V.D. Natsyk, Elementary Dislocation Mechanisms of Acoustic Emission, Naukova dumka, Kyiv, Ukraine, (2009).
[12] Y.A. Lymarenko, A.D. Shamprovskij, Mathematical modeling of acoustic emission process, Technical Diagnostics and Non-Destructive Testing. 1 (2003) 30-33.
[13] V.V. Marasanov, A.A. Sharko, Triangulation methods of defects position in acoustic emission control, System Technologie, Dnepropetrovsk, Ukraine. 6 (2015) 85-91.
[14] V.V. Marasanov, A.V. Sharko, A.A. Sharko, System classification criteria of estimation the technical state of objects on sources of acoustic signals, Visnyk of Kherson National Technical University. 1 (2016) 51-60.
[15] V.V. Marasanov, A.A. Sharko, V.V. Kobersky, Analysis of mechanisms origin acoustic evission signals at dynamic ladening of solids, Visnyk of Kherson National Technical University. 2 (2016) 60-65.
[16] V.A. Vinikov et al., Theoretical models of acoustic emission in rocks, Journal of Applied Mechanics and Theoretical Physics. 1 (2010) 100-105.
[17] V.V. Marasanov, A.A. Sharko, Model of processing of data in system of determiation of defects the method of acoustic emission, Problems of information technologies. 2 (2015) 52-55.
[18] G.S. Pisarenko, A.P. Jakovlev, V.V. Matvejev, Handbook of resistance of materials, Naukova Dumka, Kiev, Ukrainian SSR, (1988).
[19] V.V. Marasanov et al., Informative parameters and schemes of acoustic emission monitoring, Problems of Information Technologies. 1 (2016) 182-191.
[1] V. Marasanov, A. Sharko, "Discrete models characteristics of the acoustic emission signal origin forerunners", 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), p. 680, 2017
DOI: https://doi.org/10.1109/UKRCON.2017.8100329[2] A. Sharko, "MODELS AND METHODS OF PROCESSING OF INFORMATION ON LOADS OF ACOUSTIC SIGNALS IN TECHNICAL DIAGNOSTIC SYSTEMS", Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska, Vol. 8, p. 15, 2018
DOI: https://doi.org/10.5604/01.3001.0012.5276[3] P. Louda, A. Sharko, "Analysis of the Generation of Vibration Signals under Uniaxial Loading of Materials Using the Coherent Properties of Laser Radiation", Materials, Vol. 13, p. 2046, 2020
DOI: https://doi.org/10.3390/ma13092046[4] V. Babak, S. Babak, V. Eremenko, Y. Kuts, M. Myslovych, L. Scherbak, A. Zaporozhets, Models and Measures in Measurements and Monitoring, Vol. 360, p. 33, 2021
DOI: https://doi.org/10.1007/978-3-030-70783-5_2