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Abstract. The metric outside a charged body is calculated. As part of the given approach it is 

shown that the gravitational and electromagnetic fields are equally involved in the formation of the 

metric tensor components. And the contribution of fields in the metric is proportional to the energy 

of these fields. From equations for the metric it follows that the metric tensor components are 

determined up to two constants. 

1. Introduction 

In the theory of gravitation the metric is needed for correct representation of theoretical 

conclusions and experimental results. The concept of metric is most important in the general theory 

of relativity (GTR), in which the metric tensor field plays the role of the gravitational field. As a 

result, transition of GTR to the Newtonian theory of gravitation is always performed by expanding 

the metric tensor components to the principal expansion terms. For example, for the gravitational 

field potential we obtain the following expression: 2 2
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component of the metric tensor. No matter how small the field is, in GTR first we must find 00g , in 

order to evaluate then the potential  . 

In contrast to this, in the covariant theory of gravitation (CTG) the metric in the weak field 

automatically tends to the metric of the Minkowski flat space, while the gravitational field 

equations do not change their form due to the covariant notation of equations. In CTG first we 

obtain the scalar potentials   and   of the gravitational and electromagnetic fields, the vector field 

potentials, the tensors, corresponding to these fields, and only after that we calculate the spacetime 

metric outside the body [1]. 

2. The solution of the equation for the metric 

The tensor equation for the metric, which was found in [2] from the principle of least 

action, taking into account the cosmological constant gauge, in mixed indices has the following 

form: 
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Outside the body, where the mass and charge densities are equal to zero, the scalar 

curvature R  and the stress-energy tensors B 

  of the acceleration field and P 

  of the pressure field 

are also equal to zero. This is due to the fact that the acceleration field describes the motion of the 

body particles, and the pressure field is associated with the pressure of the body particles on each 

other. Both of these fields exist only in the volume of the body under consideration. The equality of 

the scalar curvature R  to zero is associated with the gauge condition of the cosmological constant. 

In the right side of (1) there are two stress-energy tensors of the gravitational U 

  and 

electromagnetic W 

  fields 
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Here G  is the gravitational constant, 0  is the vacuum permittivity, Φ  and F  are the 

gravitational and electromagnetic tensors, respectively, 

  is the unit tensor or the Kronecker 

delta. We consider that the speed of light c  is the same for the propagation of electromagnetic and 

gravitational effects through the field. The stress-energy tensor of the gravitational field in the form 

of (2) was presented in [1]. 

With regard to (2) and (3), from (1) we obtain 
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According to (4), the Ricci tensor R 

 , associated with the spacetime curvature outside a 

single body, depends on the gravitational and electromagnetic field strengths of this body. Next, we 

will use the notation described in [3]. 

Suppose there is a body with a spherical shape and the mater distribution which is 

symmetrical relative to the center of the sphere. In the static case, the metric depends neither on 

time nor on the angles of the spherical reference frame. Then the metric at an arbitrary point around 

the body will depend only on the radial coordinate r  connecting this point with the center of the 

sphere. It is therefore convenient to use the spherical coordinates tcx 0 , rx 1 , 2x  , 
3x  , 

associated with the Cartesian coordinates by relations: sin cosx r   ,  sin siny r   ,  

cosz r  . The metric tensor will be found in the following form 
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where EKB ,,  are the functions only of the radial coordinate r . 

 

Since k

kg g  

  , it is possible to find the metric tensor with contravariant indices 
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According to (5) the non-zero components are Bg 00 , Kg 11 , Eg 22 , 
2

33 sing E   .  
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The tensor of the gravitational field strength and the similar electromagnetic field tensor 

are expressed with the help of the corresponding 4-potentials with the covariant index [1] 
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here   is the scalar potential of the gravitational field around the massive body with the 

gravitational mass M ,   is the scalar potential of the electromagnetic field around the body with 

the charge Q , the quantities D  and A  denote the vector potentials of the gravitational and 

electromagnetic fields. 

 

We will assume that the vector potential D  of the body is equal to zero, since that the body 

does not rotate, its particles move randomly in different directions and the vector potentials of 

particles compensate each other. Similarly, we assume that there are no directed electrical currents 

within the body, the magnetic moments of the substance particles are compensated and 0A . 

Using (7) and (2), we find the non-zero components mrΦ  and U 

  
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From (8) and (3) we calculate the non-zero components rmF  and W 

  
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The Ricci tensor ikR  is calculated according to the standard procedure using the Christoffel 

coefficients s

ikΓ , i.e. the metric tensor and its derivatives 
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If we denote the derivatives with respect to r  by primes, then the non-zero Christoffel 

coefficients, expressed in terms of functions EKB ,,  in the metric tensor (5) and (6), according to 

(11) are equal to 
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Substituting (13) into (12), we find non-zero components of the Ricci tensor, and it also 

turns out that 22 33R R . We obtain the expression for the Ricci tensor in mixed indices with the 

help of the metric tensor: R R g 

   . Using the obtained components R 

  in the left side of (4), 

and the tensor components U 

  from (9) and W 

  from (10) in the right side (4), we find three 

independent equations 
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Equations (14) – (16) contain the second derivatives with respect to the current radius r , 

marked by two primes. If we subtract (15) from (14) and multiply the result by 
E

BE
, it gives the 

following 
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where 1A  is a constant. 

 

We will substitute in (16) the quantities K  and 
K

K 
 from (17) 
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Equation (18) is a quadratic equation for E  with the following solution 
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From (19) we can find the second derivative of E  with respect to r , that is E  . 

Substituting E  and E   in (14) and also using (17) to substitute 
K

K 
 in (14), we obtain a differential 

equation of the second order for B  
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The solution of equation (20) is the following expression 
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where 2A  and 3A  are some constants. 

 

At infinity, where the gravitational and electromagnetic fields are close to zero, the metric 

tensor (5) must have the form of a tensor for Minkowski spacetime in spherical coordinates, for 

which 1 KB , 2rE  . Therefore, in (21) 12 A  and in (17) and (19) 
4

1
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these coefficients and B  from (21) in (19), we find: 2rE  . With the known B  and E  from (17) 

we see that 
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 . With this in mind, the required functions for the metric around a single body in 

the covariant theory of gravitation will equal 

 
2

23
00 2

0

1
1

16 4

A Q
B g GM

r ckr 

 
     

 
,                       

2

22 rgE  ,                (22) 

 

11 2
3 2

2

0

1 1

1
1

16 4

K g
AB Q

GM
r ckr 

   
 

   
 

,                   2 2

33 sing r   .   

3. Conclusion 

In (22) the constants 3A  and k   are not determined from the equations for the metric, but 

the values of these constants can be found by comparison with the experimental data. According to 

(22), the contribution of the body charge Q  into the metric is opposite to the contribution of the 

gravitational mass M . 

For comparison, we will use the Reissner-Nordström metric [4-5] for a charged body in the 

general theory of relativity (GTR) 
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Expressions (23) in GTR do not contain indefinite coefficients, and in 00g  the term, 

containing 
2 4r c  in the denominator, depends only on the charge Q . This reflects the absence of 

understanding of gravitation as an independent field  in GTR, so in GTR there is no stress-energy 
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tensor of the gravitational field and this tensor is not used in determining the metric in equation (1). 

As a result, the metric outside even uncharged body in GTR depends on the body and its mass in 

some mysterious way. Indeed, if there is no gravitational field, and nevertheless the body changes 

the metric near itself, there should be a mechanism that changes the metric and transfers the body’s 

influence to any given point in space. This mechanism is not yet represented in GTR. 

In the metric (22) of the covariant theory of gravitation, both gravitational and 

electromagnetic fields are equally represented in 00g  in the term, containing 2r  in the denominator. 

Both fields are the reason due to which the metric around the body is changed. 

Let us suppose now that the constants 3A  and k  depend on the system’s parameters as 

follows 
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where bR  is the radius of the body, gE  and eE   denote the gravitational and electrical 

energies of the body’s fields, the numerical coefficients   and   should be determined further, the 

coefficients 1c  and 2c  depend on the mass and charge distribution, and in case of uniform density of 

the mass and charge of the body, are the same and are approximately equal to the value 5/3. 

 

In this case for 00g  from (22) we can write the following 
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This relation can be interpreted so that in the static case the metric components 00g  and 

11g  actually depend on the energy of the body's proper fields. 

In our opinion a perspective theory, that allows us to explain from the physical standpoint 

the mechanism which transfers influence from some masses and charges to others at a distance by 

means of the field, is Fatio–Le Sage’s theory of gravitation. In Fatio–Le Sage’s model it is also 

possible to understand not only the interaction between the masses [6], but also between the electric 

charges [3]. Previously, we found the metric of the form (22) in [3], but now we considered the case 

of a charged body and took into account the contribution of the electric energy into the metric 

tensor components. 
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