Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ETET > Volume 3 > Recent Modeling of MDMO-PPV: PCBM Solar Cells...
< Back to Volume

Recent Modeling of MDMO-PPV: PCBM Solar Cells versus Mixture Ratio, Electric Field and Incidence Angle with Hopping Model

Full Text PDF

Abstract:

It is a matter of controversy why excitons can efficiently dissociate into free carriers at an intrinsic polymer/fullerene interface. While extensive characterization is performed in the course of many reported experimental studies, correlation of performance and physical parameters among studies done in different laboratories is low, pointing out the need to address some aspects of BHJSC active materials that have received relatively some attention. In this paper, we discuss the modeling of MDMO-PPV/PCBM(Poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene)/ soluble C60 derivative, methanofullerene, [6,6]-phenyl C61-butyric acid methyl ester organic devices. In our approach, we apply two recent methods so called transfer matrix method and hopping model to calculate the exciton dissociation probability, and photocurrent density versus mixture ratio, electric field and angle of incidence. The results show that EDP (exciton dissociation probability) in solar cells without PEDOT-PSS (Poly (ethylendioxythiophene)-Poly(styrene sulfonic acid)) HTL hole transporting layer is better than the cells with additional layer in enhancing the performance of MDMO-PPV/PCBM solar cells. When the weight ratio of MDMO-PPV is less than 3:5 and 2:5 respectively, the best exciton dissociation probability, and photocurrent density of solar cell is obtained.

Info:

Periodical:
Evolving Trends in Engineering and Technology (Volume 3)
Pages:
30-36
DOI:
10.18052/www.scipress.com/ETET.3.30
Citation:
M.R. M. Boudia et al., "Recent Modeling of MDMO-PPV: PCBM Solar Cells versus Mixture Ratio, Electric Field and Incidence Angle with Hopping Model", Evolving Trends in Engineering and Technology, Vol. 3, pp. 30-36, 2014
Online since:
Dec 2014
Export:
Distribution:
References:

Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789.

Reyes-Reyes M, Kim K and Carroll D L 2005 Appl. Phys. Lett. 87 083506.

Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222.

Dennler G, Scharber M C and Brabec C J 2009 Adv. Mater. 21 1323.

Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y and Li G 2009 Nature Photon. 3649.

Zhao G, He Y and Li Y 2010 6. 5% efficiency of polymère solar cells based on poly(3 hexylthiophene) and indene-C60 bisadduct by device optimization Adv. Mater. 22 4355-8.

Frenkel J 1931 On the transformation of light into heat in solids. I Phys. Rev. 37 17-44.

Arkhipov V I and Bassler H 2004 Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers Phys. Status Solidi a 201 1152-87.

T. Aernouts, W. Geens, J. Poortmans, P. Heremans, S. Borghs and R. Mertens, Extraction of Bulk and Contact Components of the Series Resistances in Organic Bulk Donor-Acceptor Heterojunctions, Thin Solid Films Vol. 403/404, pp.297-301, (2002).

L. A. A. Pettersson, S. Ghosh and O. Inganas, Org. Electron. 3 (2002), 143.

Nils-KristerPersson, Hans Arwin, OlleInganas «Optical optimization of polyfluorene-fullerene blend photodiodes» JOURNAL OF APPLIED PHYSICS 97, 034503 (2005).

Z. X Yan, MI BaoXio G ZhiQiang, H. Wei, «Recent progress in numerical modeling for organic thin film solar cells » science china review in Physics Mechanics and Astronomy vol 54 n)3 375387 (2010).

O. Rubel, S. D. Baranovskii, W. Stolz, and F. Gebhard « Exact Solution for Hopping Dissociation of Geminate Electron-Hole Pairs in a Disordered Chain », Physical review letters 100, 196602 (2008).

R. Li Y. PengC. MaR. Wang, Y. WangH. Xie, T. Yang ,J. Xie ,S. Yan, J. Zhang «Effect of mixture ratio on the performance of MDMO-PPV: PCBM bulk heterojunctionsolar cells: A numerical study» Materials sciebnce and engineering B Journal B172 305-310 (2010).

H. Hoppe, N. S. Sariciftci and D. Meissner «Optical Constants Of Conjugated Polymer/ Fullerene Based Bulk-Heterojunction Organic Solar Cells», (2002) Mol. Cryst. Liq. Cryst., Vol. 385, pp.

Koeppe, R., Bossart, O., Calzaferri, G., &Sariciftci, N. S. (2007). Advanced photon-harvesting concepts for low-energy gap organic solar cells. Sol. Energy Mater. Sol. Cells, 91(11), 986- 995. doi: 10. 1016/j. solmat. 2007. 01. 008.

L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. M. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells, Physical Review B, 72 (2005), 085205.

113.

119.

Show More Hide