Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BSMaSS > Volume 8 > Some Anti-Solutions of the Pillai's Conjecture and...
< Back to Volume

Some Anti-Solutions of the Pillai's Conjecture and Proof of Fermat's Last Theorem

Full Text PDF

Abstract:

Let us show several; including the part already well known variants of find uncountable set solutions of equation Axm - Byn = C[1] for natural numbers A,B,C,x,y,m,n of specified values A, B, C, in contrast to the Pillai's conjecture, in which it is assumed that the set of solutions of equation [1] is finite, and proof of Fermat's Last Theorem.

Info:

Periodical:
The Bulletin of Society for Mathematical Services and Standards (Volume 8)
Pages:
26-34
DOI:
10.18052/www.scipress.com/BSMaSS.8.26
Citation:
K. R. R. Gandhi et al., "Some Anti-Solutions of the Pillai's Conjecture and Proof of Fermat's Last Theorem", The Bulletin of Society for Mathematical Services and Standards, Vol. 8, pp. 26-34, 2013
Online since:
Dec 2013
Export:
Distribution:
References:

В. Серпинский, О решении уравнений в целых числах, Физматгиз, Москва, 1961. ИНТЕРНЕТ БИБЛИОТЕКА: http: /ilib. mccme. ru/djvu/serp-int_eq. htm.

А.О. Гельфонд, Решение уравнений в целых числах, Наука Главфизматгиз, Москва, (1978).

Н.Н. Воробьёв, Приизнаки делимости, Наука, Главфизматгиз, Москва, (1974).

У.С. Давыдов, Задачи и упражнения по теоретической арифметике целых чисел, Учпедгиз, Минск, (1963).

Faltings G (1983). Endlichkeitssätze für abelsche Varietäten über Zahlkörpern,. Inventiones Mathematicae 73 (3): 349-366. doi: 10. 1007/BF01388432.

PROF. DR. K. RAJA RAMA GANDHI, Reuven Tint, Репродуцированное решение Ферма его "Великой" теоремы. (элементарный аспект), Bulletin of Mathematical Sciences & Applications ISSN: 2278-9634 Vol. 2 No. 3 (2013), pp.05-15.

Reuven Tint, The Identities of Ordinary which Is Leading to the Extraordinary Consequences (Elementary Aspect), , Asian Journal of Mathematics and Applications - ISSN 2307-7743, (2013).

Show More Hide