Abstract. In this paper, we generalize the concept of prime number and define the real primes. It allows applying the new concept to cryptology.

Definition

A real number is compound if it can be written as \[\prod p_j^{n_j} \] where \(p_j \) are primes and \(n_j \) are rationals. This decomposition in prime factors is unique. A prime real number or R-prime can be written only as \(p=p\cdot1 \). Thus we define other real prime numbers like \(\pi, e, \ln(2) \). Of course, it is a convention, because, we can consider \(\pi^2 \) as prime and \(\pi \) will be no more prime. It is equivalent in what will follow.

Thus \(\sqrt[3]{p} = p^\frac{1}{3} \) is compound. Also \(\sqrt[3]{p} + 1 = p^\frac{1}{3} + 1 \) is prime when \(p \) is prime and we have \(\sqrt[3]{p} - 1 = (p - 1)(\sqrt[3]{p} + 1)^{-1}(\sqrt[3]{p^2} + 1)^{-1} \ldots (\sqrt{p} + 1)^{-1} \) compound for \(p \) prime, for example.

Another example: \(\sqrt{p^2} - \sqrt{p} + 1 = (p + 1)(\sqrt{p} + 1)^{-1} \)

It is 5/2 that divides 5 not the contrary!

Division of a real by a real

The GCD of two numbers \(p \) and \(q \) are prime numbers:

\[p \neq q \Rightarrow \gcd(p, q) = 1 \]

\[mn < 0 \Rightarrow \gcd(p^n, q^n) = 1 \]

\[mn > 0; m > 0; \gcd(p^n, q^n) = p^{\gcd(m, n)} \]

\[mn > 0; m < 0; \gcd(p^n, q^n) = p^{\max(m, n)} \]

\[i \geq n \geq 1; \gcd(\prod_{i=1}^{n} p_{n_i}^{m_i}, \prod_{i=1}^{n} p_{n_i}^{n_i}) = \prod_{i=1}^{n} \gcd(p_{n_i}^{m_i}, p_{n_i}^{n_i}) \]

So a real number \(y \) divides a real number \(x \) if \(\gcd(x, y) \) is different of 1.

Theorem

\(p \) is prime then \(\forall a \in \mathbb{R}, \exists k \in \mathbb{R} ; a^p = a + kp \)

Proof of the theorem

\[a \cdot 10^{-u} = \sum_{m=0}^{\infty} a_m \cdot 10^{-m} ; a_m \in \mathbb{N} \]

\[\exists k, k'; a^p \cdot 10^{-pu} = \sum_{n=0}^{\infty} a_n^p \cdot 10^{-n} + kp = \sum_{n=0}^{\infty} (a_n + k \cdot p) \cdot 10^{-n} + kp = \sum_{n=\infty}^{\infty} a_n \cdot 10^{-n} + k^* p \]
The probabilities

What is the probability that a number between \(x + dx \) and \(x \) is prime? It is

\[
p(x' \in [x, x + dx]) = \frac{d\log(x)}{x} = \frac{dx}{x^2}
\]

Effectively

\[
\log(1 + \frac{dx}{x}) = \log(x + dx) - \log(x) = \frac{dx}{x} = d \log(x)
\]

And

\[
p(x' \in [x, x + dx]) = p(x' \in [0, x + dx]) - p(x' \in [0, x]) = \frac{\log(x + dx)}{x + dx} - \frac{\log(x)}{x}
\]

\[
= \frac{\log(x + dx)}{x} - \frac{\log(x)}{x} = \frac{d \log(x)}{x}
\]

How many primes are there between \(x \) and \(x + dx \)? There are

\[
\pi(x) = \int \frac{dx}{d \log(x)} = \infty
\]

Let us build real primes \(P \) and \(Q \). We have \(p_i \) a prime and \(u_n \) a sequence.

We know that \(P_n = 1 + \sqrt[n]{P_{n-1}} \) is prime. With \(N \) enough great, \(P = p_N \). Also with another prime \(q_i \) and another sequence \(v_n \), we have another real prime with \(M \) enough great, \(Q = q_M \). As \(1 + \sqrt{P} \) is prime and \(1 + \sqrt{Q} \) is prime, let \(n = \sqrt{P} + \sqrt{Q} \). Let \(e \) coprime with \(n \) and let \(d = kn - e \).

If we have \(n \) and \(e \) public keys, we crypt \(M \) by \(M = C + e + kn \) and decrypt it by \(d \) and \(n \) with \(C = M - e - k'n = M + d + k''n \).

Another possibility is to take \(n = (P-1)(Q-1) \) and \(e \) coprime with \(n \) then \(n \) and \(e \) are public keys and \(M = C^e + kn \) then \(C = M^d + k'n \).

References

[2] X. Gourdon, « The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height »

