A New Hilbert-type Integral Inequality with the Homogeneous Kernel of Real Degree Form and the Integral in Whole Plane

Xie Zitian¹ K. Raja Rama Gandhi ² Zheng Zeng³

¹Department of Mathematics, Zhaoqing University, Zhaoqing, Guangdong, China 526061
² Resource person in Oxford University, India and BITS-Vizag, INDIA.
³ Department of Mathematics, Shaoquan University, Shaoquan, Guangdong, China 512005

Keywords: Hilbert-type integral inequality, weight function, Holder’s inequality, function.

Abstract: In this paper, we build a new Hilbert’s inequality with the homogeneous kernel of real order and the integral in whole plane. The equivalent inequality is considered. The best constant factor is calculated using ψ function.

1 INTRODUCTION

If $f(x), g(x) \geq 0$, such that $0 < \int_0^\infty f^2(x) \, dx < \infty$, $0 < \int_0^\infty g^2(x) \, dx < \infty$ [1]

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} \, dx \, dy < \pi \left(\int_0^\infty f^2(x) \, dx \right)^{1/2} \left(\int_0^\infty g^2(x) \, dx \right)^{1/2}.
\]

(1.1)

where the constant factor π is the best possible. Inequality (1.1) is well-known as Hilbert’s integral inequality, which has been extended by Hardy–Riesz as [2].

If $p > 1, 1/p + 1/q = 1$, $f(x), g(x) \geq 0$, such that $0 < \int_0^\infty f^p(x) \, dx < \infty$, and $0 < \int_0^\infty g^q(x) \, dx < \infty$; then we have the following Hardy–Hilbert’s integral inequality:

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} \, dx \, dy < \frac{\pi}{\sin(\pi/p)} \left(\int_0^\infty f^p(x) \, dx \right)^{1/p} \left(\int_0^\infty g^q(x) \, dx \right)^{1/q}.
\]

(1.2)

where the constant factor $\frac{\pi}{\sin(\pi/p)}$ is also the best possible.

Hilbert’s inequality attracts some attention in recent years. Actually, inequalities (1.1) and (1.2) have many generalizations and variations. (1.1) has been strengthened by Yang and others (including double series inequalities) [3, 4, 6-21].

In 2008, Zitian Xie and Zheng Zeng gave a new Hilbert-type Inequality [4] as follows

If $\alpha > 0, \beta > 0, \gamma > 1, 1/p + 1/q = 1$, $f(x), g(x) \geq 0$, such that

$0 < \int_0^\infty f^\gamma (x) \, dx < \infty$ and $0 < \int_0^\infty g^\gamma (x) \, dx < \infty$,

then

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{(x+\alpha^2y)(x+\beta^2y)(\alpha^2+y)} \, dx \, dy
\]

$< K \left(\int_0^\infty f^{\gamma-\gamma/2}(x) \, dx \right)^{1/p} \left(\int_0^\infty g^{-\gamma/2}(x) \, dx \right)^{1/q},$

(1.3)

where the constant factor $K = \frac{\pi}{(\alpha+b)(\alpha+c)(\alpha+b)}$ is the best possible.

In 2010, Jianhua Xhong and Bicheng Yang gave a new Hilbert-type Inequality [5] as follows:
Assume that

\[\lambda, p > 0 (p \neq 1), r > 1, 1/p + 1/q = 1, 1/r + 1/s = 1, \phi(x) = x^{p(1 - \lambda) - 1}, \varphi(x) = x^{\varphi(\lambda - 1)}, x \in (0, \infty), \]

\[K = \Gamma(\beta + 1) \sum_{k=0}^{\infty} (-1)^k \binom{\alpha - \lambda}{k} \left[\frac{1}{(k + \lambda / r)^{\beta - 1} + \frac{1}{(k + \lambda / s)^{\beta - 1}}} \right], \text{and } f, g \geq 0. \]

\[0 < \|f\|_{p, \beta} := \left\{ \int_0^\infty x^{2(1 - \beta) - 1} f^p(x) \, dx \right\}^{1/p} < \infty, 0 < \|g\|_{p, \beta} < \infty, \text{ then} \]

(1) for \(p > 1 \), we have the following equivalent inequalities:

\[\int_0^\infty \left[\frac{\ln(x/y)^\beta}{|x-y| \left(\max\{|x|,|y|\} \right)^\beta} \right] \, dx \, dy < K \left\| f \right\|_{p, \beta} \left\| g \right\|_{p, \beta}. \]

The main purpose of this paper is to build a new Hilbert-type inequality with the homogeneous kernel of real order and the integral in whole plane, by estimating the weight function using \(\psi \) function. The equivalent inequality is considered.

We knew that (in this paper, \(\gamma \) is the Euler's constant.)

\[\psi(z) = \frac{\Gamma(z)}{\Gamma(z+1)} = -\gamma + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+z} \right), \psi(1) = -\gamma, \psi(1/2) = -\gamma - 2\ln 2. \]

Recent XIE Zitin and ZHOU Qinghua prove that the expression of the \(\psi \)-function admits a finite expression in elementary function for rational number \(z \), and prove that [6]

\[\psi\left(\frac{a}{b} \right) = \frac{\Gamma\left(\frac{a}{b} \right)}{\Gamma\left(\frac{a}{b} \right)} = -\ln b - \gamma - \ln 2 - \frac{\pi}{2} \cot \frac{\pi a}{b} + \sum_{n=1}^{\infty} \cos \frac{2\pi n}{b} \ln \sin \frac{k\pi}{b} \]

and have

\[\psi\left(\frac{1}{3} \right) = -\gamma - \ln 3 - \ln 2 - \frac{\pi}{2} \cot \frac{\pi}{3} + \frac{4\pi}{3} \ln \sin \frac{\pi}{3} = -\gamma - \ln 3 - \frac{\pi}{2\sqrt{3}}; \]

\[\psi\left(\frac{2}{3} \right) = -\gamma - \ln 3 + \frac{2\pi}{3} \ln \sin \frac{\pi}{3} = -\gamma - \ln 3 + \frac{\pi}{2\sqrt{3}}; \]

\[\psi\left(\frac{1}{4} \right) = -\gamma - 3\ln 2 - \frac{\pi}{2}; \]

\[\psi\left(\frac{3}{4} \right) = -\gamma - 3\ln 2 + \frac{\pi}{2}; \]

\[\psi\left(\frac{1}{6} \right) = -\gamma - 2\ln 2; \]

\[\psi\left(\frac{5}{6} \right) = -\gamma - 2\ln 2 + \frac{\pi}{2}; \]

\[\psi\left(\frac{1}{5} \right) = -\gamma - 5\ln 2 - \ln(\sqrt{5} - 1) - \frac{\pi}{2} \ln 2 - \frac{\pi}{40} (5 + 3\sqrt{5}) \sqrt{10 - 2\sqrt{5}}; \]

\[\psi\left(\frac{4}{5} \right) = -\gamma - 5\ln 2 + \ln(\sqrt{5} - 1) - \frac{\pi}{2} \ln 2 + \frac{\pi}{40} (5 + 3\sqrt{5}) \sqrt{10 - 2\sqrt{5}}. \]

In the following, we always suppose that:

\[1/p + 1/q - 1, p > 1, \min\{a\lambda + b\mu, a\mu + b\lambda\} > -1, a\mu + b\lambda > 0, a\lambda + b\mu > 0, \mu > 0, \lambda > 0. \]

\[a + b = 1. \]

2 SOME LEMMAS

We start by introducing some Lemmas.
Lemma 2.1 If \(s > 0, r \neq 0, r > -s \), then

\[
\int_0^1 x^{-s} \ln(1 - x^r)dx = -\frac{1}{r} \left[y + \psi \left(\frac{r}{s} + 1 \right) \right] \\
\int_0^1 x^{-s} \ln(1 + x^r)dx = -\frac{1}{r} \ln 2 - \frac{1}{2r} \left[\psi \left(\frac{r + 2s}{2s} \right) - \psi \left(\frac{r}{2s} \right) \right]
\]

(2.1)

Proof. We obtain,'

1) \(-\int_0^1 x^{-s} \ln(1 - x^r)dx = \int_0^1 x^{-s} \sum_{n=1}^{\infty} \frac{x^n}{n} dx \)

\[
= \sum_{n=1}^{\infty} \int_0^1 \frac{x^{n-r}}{n} dx = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{1 + r/n} \right) \\
= \frac{1}{r} \sum_{n=1}^{\infty} \left(\frac{1}{1 + r/n} \right) \\
= \frac{1}{r} \left[y + \psi \left(\frac{r}{s} + 1 \right) \right]
\]

2) \(\int_0^1 x^{-s} \ln(1 + x^r)dx = \int_0^1 x^{-s} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} dx \)

\[
= \sum_{n=1}^{\infty} \int_0^1 \frac{(-1)^{n+1} x^{n-r+1}}{n} dx = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \int_0^1 \frac{1}{1 + r/n} dx \\
= \lim_{N \to \infty} \frac{1}{r} \sum_{n=1}^{N} \frac{(-1)^{n+1}}{n} \ln \left(1 + \frac{r}{n} \right) \\
= \frac{1}{r} \ln 2 - \frac{1}{2r} \left[\psi \left(\frac{r + 2s}{2s} \right) - \psi \left(\frac{r}{2s} \right) \right]
\]

The lemma is proved.

In particular, if \(r > -1, r \neq 0 \), then

\[
\int_0^1 \ln \left(\frac{u^r + u + 1}{u^r - u + 1} \right) du \\
= \int_0^1 \ln(1 - u^r)du - \int_0^1 \ln(1 + u^r)du + \int_0^1 (u^r + 1)du - \int_0^1 (u^r - 1)du \\
= \frac{1}{r} \left[\psi(1) - \psi \left(\frac{r}{6} \right) + \psi \left(\frac{r}{6} + \frac{1}{2} \right) - \psi \left(\frac{r}{2} \right) + \psi \left(\frac{r}{2} + \frac{1}{2} \right) \right]
\]

(2.2)
Lemma 2.2 Define the weight functions as follow:

\[w(x) := \int_{-\infty}^{\infty} \left(\min \left(\frac{\sqrt{x^2+y^2}}{\max (|x|,|y|)} \right) \right)^{\alpha} \ln \frac{x^2+y^2}{x^2+y^2} \, dy, \]

\[\tilde{w}(y) := \int_{-\infty}^{\infty} \left(\min \left(\frac{\sqrt{x^2+y^2}}{\max (|x|,|y|)} \right) \right)^{\beta} \ln \frac{x^2+y^2}{x^2+y^2} \, dx, \]

Then

\[w(x) = \tilde{w}(y) = k \]

Proof We only prove that \(w(x) = k \) for \(x \in (-\infty, 0) \).

Using lemma 2.1, setting \(y = ux \), and \(y = -ux \),

\[w(x) := \int_{-\infty}^{\infty} \left(\frac{y}{\max \left(|x|, |y| \right)} \right)^{\alpha} \ln \frac{x^2+y^2}{x^2+y^2} \, dy, \]

\[= w_1 + w_2 \]

Then

\[w_1 = \int_{0}^{\infty} u^{-3+2\alpha+\beta} \ln \frac{u^2+u+1}{u^2+1} \, du + \int_{0}^{\infty} u^{-1-\alpha-2\beta} \, du \]

\[= \int_{0}^{\infty} u^{-3+2\alpha+\beta} \ln \frac{u^2+u+1}{u^2+1} \, du + \int_{0}^{\infty} u^{-1+2\beta} \, du \]

\[w_2 = \int_{0}^{\infty} u^{-3+2\alpha+\beta} \ln \frac{u^2+1}{u^2-u+1} \, du + \int_{0}^{\infty} u^{-1+2\beta} \, du \]

\[= \int_{0}^{\infty} u^{-3+2\alpha+\beta} \ln \frac{u^2+1}{u^2-u+1} \, du + \int_{0}^{\infty} u^{-1+2\beta} \, du \]

And

\[w = w_1 + w_2 = \int_{0}^{\infty} u^{-3+2\alpha+\beta} \ln \frac{u^2+u+1}{u^2-u+1} \, du + \int_{0}^{\infty} u^{-1+2\beta} \, du \]

\[= \frac{2}{\alpha+\beta} \left[\psi \left(\frac{a\alpha+b\beta}{6} \right) - \psi \left(\frac{a\alpha+b\beta}{3} \right) \right] + \frac{1}{\alpha+\beta} \left[\psi \left(\frac{a\alpha+b\beta}{6} \right) - \psi \left(\frac{a\alpha+b\beta}{3} \right) \right] \]

\[= k \]

Similarly, setting \(x = y / u \), and \(x = -y / u \)

\[\tilde{w}(y) = \int_{-\infty}^{\infty} \left(\frac{y}{\max \left(|x|, |y| \right)} \right)^{\beta} \ln \frac{x^2+y^2}{x^2+y^2} \, dx, \]

\[+ \int_{0}^{\infty} \left(\frac{y}{\max \left(|x|, |y| \right)} \right)^{\beta} \ln \frac{x^2+y^2}{x^2+y^2} \, dx \]
Lemma 2.3 For $\varepsilon > 0$; and $\min\{a\mu + b\lambda - 2\varepsilon / q, a\lambda + b\mu - 2\varepsilon / q\} > -1$, define both functions, \tilde{f}, \tilde{g} as follow:

- $\tilde{f}(x) = \left\{ \begin{array}{ll} x^{\mu(\mu - 1) - 2\varepsilon / q} & \text{if } x \in (1, \infty), \\
0 & \text{if } x \in [-1,1], \\
(-x)^{\mu(\mu - 1) - 1 - 2\varepsilon / q} & \text{if } x \in (-\infty,-1), \end{array} \right.$
- $\tilde{g}(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \in [1,\infty), \\
0 & \text{if } x \in [-1,1], \\
(-x)^{\mu(\mu - 1) - 1 - 2\varepsilon / q} & \text{if } x \in (-\infty,-1). \end{array} \right.$

Then

$$I(\varepsilon) = \varepsilon \left(\int_{1}^{\infty} x^{\mu(\mu - 1) - 2\varepsilon / q} \tilde{f}'(x) \, dx \right)^{1/q} \left(\int_{-\infty}^{1} x^{\mu(\mu - 1) - 2\varepsilon / q} \tilde{g}'(x) \, dx \right)^{1/q} = 1;$$

$$\tilde{I}(\varepsilon) = \left(\int_{-\infty}^{1} \tilde{f}(x) \tilde{g}(y) \left(\frac{\min\{x|y\}|y|}{\max\{x|y\}|y|^q} \right)^{1/q} \ln \frac{x^2 + y^2 + y^2}{x^2 + y^2} \, dy \right) = k(\varepsilon \to 0^+).$$

Proof

Easily,

$$I(\varepsilon) = \varepsilon \left(\int_{1}^{\infty} x^{-1} x^{-2\varepsilon / q} \, dx \right)^{1/q} = 1$$

Let $y = -Y$, using $\tilde{f}(y) = \tilde{f}(-x)$ and $\tilde{g}(y) = \tilde{g}(x)$; and

$$\tilde{f}(x) \int_{-\infty}^{1} \tilde{g}(y) \left(\frac{\min\{x|y\}|y|}{\max\{x|y\}|y|^q} \right)^{1/q} \ln \frac{x^2 + y^2 + y^2}{x^2 + y^2} \, dy \quad \text{we have that} \quad \tilde{I}(\varepsilon) = \tilde{I}(\varepsilon)$$

$$= 2\varepsilon \left(\int_{1}^{\infty} x^{\mu(\mu - 1) - 2\varepsilon / q} \left(\int_{-\infty}^{1} (-y)^{b(\mu - 1) - 2\varepsilon / q} \left(\frac{\min\{x|y\}|y|}{\max\{x|y\}|y|^q} \right)^{1/q} \ln \frac{x^2 + y^2 + y^2}{x^2 + y^2} \, dy \right) \, dx \right)$$

$$+ \int_{1}^{\infty} x^{\mu(\mu - 1) - 2\varepsilon / q} \left(\int_{-\infty}^{1} y^{b(\mu - 1) - 2\varepsilon / q} \left(\frac{\min\{x|y\}|y|}{\max\{x|y\}|y|^q} \right)^{1/q} \ln \frac{x^2 + y^2 + y^2}{x^2 + y^2} \, dy \right) \, dx$$

$$= I_1 + I_2$$

Setting $y = tx$ then
Similarly by lemma 2.2, we have

we know that \(\varphi(x) \) is a continuous function, then

The lemma is proved.

Lemma 2.4 If \(f(x) \) is a nonnegative measurable function, and \(0 < a \leq \frac{\lambda}{\mu} \leq 1 \), then

Similarly

by lemma 2.2, we have

we know that \(\psi(x) \) is a continuous function, then \(\lim_{\varepsilon \to 0} I(\varepsilon) = k \)

The lemma is proved.

Lemma 2.4 If \(f(x) \) is a nonnegative measurable function, and \(0 < a \leq \frac{\lambda}{\mu} \leq 1 \), then

\[\int_{\mathbb{R}^n} \frac{f^p(x) \, dx}{\|x\|^{a \lambda + b \lambda - 2 \varepsilon / q}} < \infty \]

Then
Proof By lemma 2.2, we find

\[
J := \int_0^{\infty} \left(\int_0^{\infty} f(x) \left(\frac{\min\{x, y\}}{\max\{x, y\}} \right)^{p-1} \ln \frac{x^2 + y^2}{x^2 + y^2} \right) \, dx \, dy
\]

\[
\leq k^p \int_0^{\infty} \left[\int_0^{\infty} \left(\frac{\min\{x, y\}}{\max\{x, y\}} \right)^{p-1} \ln \frac{x^2 + y^2}{x^2 + y^2} \right] \, f^p(x) \, dx \, dy
\]

(2.7)

3 MAIN RESULTS

Theorem 3.1 If \(p > 1 \), both functions, \(f(x) \) and \(g(x) \), are nonnegative measurable functions, and satisfy

\[
\frac{\min\{x, y\}}{\max\{x, y\}} \leq k \quad \text{and} \quad \frac{\min\{x, y\}}{\max\{x, y\}} \leq k^p
\]

Inequalities (3.1) and (3.2) are equivalent, and where the constant factors \(k \) and \(k^p \) are the best possible.
Proof If there exist a \(y \in (-\infty, 0) \cup (0, \infty) \), such that (2.7) takes the form of equality, then there exist constants \(M \) and \(N \), such that they are not all zero, and
\[
M \left| \frac{x^{[-a(u-\lambda)\cdot]-1}}{y^{[-b(u-\lambda)\cdot]-1}} \right| f^p(x) = N \left| \frac{x^{[-a(u-\lambda)\cdot]-1}}{y^{[-b(u-\lambda)\cdot]-1}} \right| a.e. \text{ in } (-\infty, \infty)
\]
Hence, there exists a constant \(C \), such that
\[
M \left| y^{[-b(u-\lambda)\cdot]-1} \right| f^p(x) = C a.e. \text{ in } (-\infty, \infty)
\]
It means that \(M = 0 \). In fact, if \(M \neq 0 \), then
\[
\left| y^{[-b(u-\lambda)\cdot]-1} \right| f^p(x) = \frac{C}{M} \text{ a.e. in } (-\infty, \infty)
\]
which contradicts the fact that \(0 < \int_{-\infty}^{\infty} |x| y^{[-b(u-\lambda)\cdot]-1} f^p(x) dx < \infty \). In the same way, we claim that \(y = 0 \):
This is too a contradiction and hence by (2.7), we have (3.2).

By Hölder's inequality with weight and (3.2), we have,
\[
J = \int_{-\infty}^{\infty} \left[\left| y^{[-b(u-\lambda)\cdot]-1} \right| f^p(x) dx \right]^{1/q} \leq \left(\int_{-\infty}^{\infty} \left| y^{[-b(u-\lambda)\cdot]-1} \right| g^q(y) dy \right)^{1/q}
\]
Using (3.2), we have (3.1).

Setting
\[
g(y) = |y|^{[-b(u-\lambda)\cdot]-1} \left(\int_{-\infty}^{\infty} \left(\frac{\min(|x|,|y|)|}{\max(|x|,|y|)} \right)^p dx \right)^{1/p} \frac{\ln \frac{x^2 + xy + y^2}{x^2 + y^2}}{x^2 + y^2} dx
\]
Then
\[
J = \int_{-\infty}^{\infty} \left| y \right|^{[-b(u-\lambda)\cdot]-1} g^q(y) dy \text{ by (2.7), we have } J < \infty \text{ if } J > 0, \text{ then (3.2) is proved};
\]
if \(0 < J < \infty \), by (3.1), we obtain
\[
0 < \int_{-\infty}^{\infty} \left| y \right|^{[-b(u-\lambda)\cdot]-1} g^q(y) dy = J
\]
Inequalities (3.1) and (3.2) are equivalent.

If the constant factor \(k \) in (3.1) is not the best possible, then there exists a positive \(h \) (with \(h < k \)), such that
\[
\int_{-\infty}^{\infty} \min(|x|,|y|) \left(\frac{\min(|x|,|y|)}{\max(|x|,|y|)} \right)^p dx dy
\]
\[
< h \int_{-\infty}^{\infty} \left| y \right|^{[-b(u-\lambda)\cdot]-1} g^q(y) dx \left(\int_{-\infty}^{\infty} \left| y \right|^{[-b(u-\lambda)\cdot]-1} g^q(y) dx \right)^{1/q}
\]
For \(\epsilon > 0 \), by (2.5), using lemma 2.3, we have
\[
k + o(1) < \epsilon h \left(\int_{-\infty}^{\infty} \left| y \right|^{[-b(u-\lambda)\cdot]-1} f^p(x) dx \right)^{1/p} \left(\int_{-\infty}^{\infty} \left| y \right|^{[-b(u-\lambda)\cdot]-1} g^q(y) dx \right)^{1/q} = h
\]
Theorem 3.2 If $1 > p > 0$; both functions, $f(x)$ and $g(x)$, are nonnegative measurable functions, and satisfy

$0 < \int_{-\infty}^{\infty} x^{(p-1)(\mu-1)-1} f^p(x) dx < \infty$ and $0 < \int_{-\infty}^{\infty} x^{(q-1)(\mu-1)-1} g^q(x) dx < \infty$. Then,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \left(\frac{\min \{ |x|, |y| \} }{\max \{ |x|, |y| \}} \right)^{\frac{1}{p}} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy$$

$$> k \left(\int_{-\infty}^{\infty} x^{(p-1)(\mu-1)-1} f^p(x) dx \right)^{1/p} \left(\int_{-\infty}^{\infty} x^{(q-1)(\mu-1)-1} g^q(x) dx \right)^{1/q}$$

(3.5)

$J > k^p \int_{-\infty}^{\infty} x^{(p-1)(\mu-1)-1} f^p(x) dx$

and

$$L := \int_{-\infty}^{\infty} x^{(q-1)(\mu-1)-1} \left(\int_{-\infty}^{\infty} \left(\frac{\min \{ |x|, |y| \} }{\max \{ |x|, |y| \}} \right)^{\frac{1}{q}} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} g(y) \, dy \right)^{1/q} \, dx$$

$$< k^q \int_{-\infty}^{\infty} y^{(q-1)(\mu-1)-1} g^q(y) dy$$

(3.6)

Inequalities (3.5),(3.6) and (3.7) are equivalent, and where the constant factors k, k^p, and k^q are the best possible.

Proof By the reverse Hölder’s inequality and the same way, we can obtain the reverse forms of (2.7) and (3.3). And then we deduce the (3.5), by the same way, we obtain (3.6).

Setting $g(y)$ as the theorem 1, we obtain $J > 0$, if $J = \infty$, then we have (3.6). If $0 < J < \infty$, by (3.5)

$$\int_{-\infty}^{\infty} x^{(p-1)(\mu-1)-1} g^q(y) dy = J = I'$$

$$> k \left(\int_{-\infty}^{\infty} x^{(p-1)(\mu-1)-1} f^p(x) dx \right)^{1/p} \left(\int_{-\infty}^{\infty} x^{(q-1)(\mu-1)-1} g^q(x) dx \right)$$

and we have (3.6), and inequalities (3.5) and (3.6) are equivalent.

Setting

$$[g(x)]_n = \begin{cases} \frac{1}{n} & \text{if } g(x) < \frac{1}{n} \\ g(x) & \text{if } \frac{1}{n} \leq g(x) \leq n \\ n & \text{if } g(x) > n \end{cases}$$

$$E_n = \left[-n, -\frac{n}{1} \right] \cap \left[\frac{n}{1}, +\infty \right]$$

then $\exists n \in \mathbb{N}$, such that $0 \leq n$; we have

$$\int_{E_n} x^{(p-1)(\mu-1)-1} g^q(y) dy < 0$$

And

$$[f(x)]_n = \left(\int_{E_n} [g(x)]_n \left(\frac{\min \{ |x|, |y| \} }{\max \{ |x|, |y| \}} \right)^{\frac{1}{q}} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dy \right)^{1/q}$$

$$[L(x)]_n = \left[\int_{E_n} g(x) \left(\frac{\min \{ |x|, |y| \} }{\max \{ |x|, |y| \}} \right)^{\frac{1}{q}} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dy \right)^{1/p}$$

then $\exists n_0 \in \mathbb{N}$, such that $n > n_0$; we have

$$\int_{E_n} x^{(p-1)(\mu-1)-1} g^q(y) dy < \infty$$

and $L_n > 0$; using (3.5), we obtain
\[\int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx = L_n \]

\[= \int_{E} \left(\min \left\{ |x|, |y| \right\} \right)^{1/p} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \left[f(x) \right] \left[g(x) \right] \, dx \, dy \]

\[> k \left\{ \int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx \right\}^{1/r} \left\{ \int_{E} |x|^{q[1-b(u-1)]-1} g^q(x) \, dx \right\}^{1/q} \]

\[0 < \int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx = L_n < k^p \int_{E} |x|^{q[1-b(u-1)]-1} g^q(x) \, dx \]

(3.8)

(3.9)

then \(0 < \int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx < \infty \). Hence for \(n \to \infty \); by using (3.5), both (3.8) and (3.9) keep the forms strict sign-inequality and we have (3.7). By the reverse Hölder's inequality, we have

\[I^* = \int_{E} \left[|x|^{1+a(u-1)} f(x) \right] \left[\int_{E} |x|^{1+a(u-1)} g(x) \right] \left(\min \left\{ |x|, |y| \right\} \right)^{1/r} \left(\max \left\{ |x|, |y| \right\} \right)^{1/q} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy \]

\[\geq \left(\int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx \right)^{1/p} \left(\int_{E} |x|^{q[1-b(u-1)]-1} g^q(x) \, dx \right)^{1/q} \]

Then by (3.7), we have (3.5), which is equivalent to (3.7). Therefore (3.5)-(3.7) are equivalent.

If there exist a constant \(h^* > k \); such that (3.5) still valid as we replace \(k \) by \(h^* \); then for \(\min \{a \lambda + b \mu, a \mu + b \lambda\} > -1 \), we find the reverse of (3.4) and then \(k = h^* \left(\epsilon \to 0^+ \right) \).

Hence \(h^* = k \) is the best value of (3.5), we confirm that the constant factor of (3.6)(3.7) is the best possible, otherwise by the reverse of (3.3)(3.10) we cannot get a contradiction that the constant factor is not the best possible.

Thus we complete the prove of the theorem.

4 SOME EXAMPLES

In this section we shall consider the case for which the constant factor is the best possible, namely inequality (3.1).

A) Let \(a = b = \frac{1}{2} \); we have

\[\int_{E} \int_{E} f(x) g(y) \left(\min \left\{ |x|, |y| \right\} \right)^{1/r} \left(\max \left\{ |x|, |y| \right\} \right)^{1/q} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy \]

\[< k \left\{ \int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx \right\}^{1/r} \left\{ \int_{E} |x|^{q[1-b(u-1)]-1} g^q(x) \, dx \right\}^{1/q} \]

(4.1)

there

In particular, from (4.1) we get the following particular cases:

1) If \(\lambda + \mu = -1 \), then \(k = 2 \left(\psi(2) - \frac{2}{3} \right) + 2 \left(\psi(1) - \frac{1}{3} \right) = 2 + \frac{3 \ln 3}{2} \), we have

\[\int_{E} \int_{E} f(x) g(y) \left(\min \left\{ |x|, |y| \right\} \right)^{1/r} \left(\max \left\{ |x|, |y| \right\} \right)^{1/q} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy \]

\[< \left(2 + \frac{3 \ln 3}{2} \right) \left(\int_{E} |x|^{p[1-a(u-1)]-1} f^p(x) \, dx \right)^{1/p} \left(\int_{E} |x|^{q[1-b(u-1)]-1} g^q(x) \, dx \right)^{1/q} \]

(4.2)
2) If \(\lambda + \mu = 3 \); then
\[
\int_0^\infty \int_0^\infty f(x)g(y) \left(\frac{\min \{x, y\}^\alpha}{\max \{x, y\}^{\beta-\alpha}} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy
\]
we have
\[
\left(\frac{4}{3} - \pi \right) \left(\int_0^\infty |x|^{\frac{(\alpha-1)}{2}} f(x) \, dx \right)^{1/p} \left(\int_0^\infty |x|^{\frac{(\alpha-1)}{2}} g^q(x) \, dx \right)^{1/q}
\]
(4.3)

3) If \(\lambda + \mu = 2 \); then
\[
\int_0^\infty \int_0^\infty f(x)g(y) \left(\frac{\min \{x, y\}^\alpha}{\max \{x, y\}^{\beta-\alpha}} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy
\]
we have
\[
\left(6 \ln 3 + \frac{2\pi}{\sqrt{3}} \right) \left(\int_0^\infty |x|^{\frac{(\alpha-1)}{2}} f(x) \, dx \right)^{1/p} \left(\int_0^\infty |x|^{\frac{(\alpha-1)}{2}} g^q(x) \, dx \right)^{1/q}
\]
(4.4)

B) Let \(\lambda = \mu \) in (3.1), then we have a integral inequality with the homogeneous kernel of 0 degree form as follows:
\[
\int_0^\infty \int_0^\infty f(x)g(y) \left(\frac{\min \{x, y\}^\alpha}{\max \{x, y\}^{\beta-\alpha}} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy
\]
\[
< k(\lambda) \left(\int_0^\infty |x|^{\frac{(\alpha-1)}{2}} f(x) \, dx \right)^{1/p} \left(\int_0^\infty |x|^{\frac{(\alpha-1)}{2}} g^q(x) \, dx \right)^{1/q}
\]
(4.5)

there

\[
k(\lambda) = \frac{4}{3} \left[\psi \left(\frac{1}{3} \right) - \psi \left(\frac{1}{2} \right) \right] + \frac{2}{3} \left[\psi \left(\frac{1}{4} \right) - \psi \left(\frac{3}{4} \right) \right] = \frac{4}{3} (4 - \pi)
\]

References

