Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BSMaSS > Volume 6 > Investigations on the Theory of Riemann Zeta...
< Back to Volume

Investigations on the Theory of Riemann Zeta Function III: A Simple Proof for the Lindelöf Hypothesis

Full Text PDF

Abstract:

We create new formulas for proving Lindelof Hypothesis from Zeta Function.

Info:

Periodical:
The Bulletin of Society for Mathematical Services and Standards (Volume 6)
Pages:
24-31
DOI:
10.18052/www.scipress.com/BSMaSS.6.24
Citation:
K. R. R. Gandhi et al., "Investigations on the Theory of Riemann Zeta Function III: A Simple Proof for the Lindelöf Hypothesis", The Bulletin of Society for Mathematical Services and Standards, Vol. 6, pp. 24-31, 2013
Online since:
Jun 2013
Export:
Distribution:
References:

[1] http: /fr. wikipedia. org/wiki/Histoire_de_la_fonction_zêta_de_Riemann, available in May 19, (2013).

[2] E. Lindelöf, Quelques remarques sur la croissance de la function ζs, Bulletin des sciences mathématiques, 2. ª série, vol. 3, décembre 1908, pp.341-356.

[3] http: /en. wikipedia. org/wiki/Hurwitz_zeta_function#cite_note-1, available in May 22, (2013).

[4] Hasse, Helmut (1930), Ein Summierungsverfahren für die Riemannsche ζ-Reihe, Mathematische Zeitschrift, 32 (1): 458-464.

DOI: 10.1007/bf01194645

[5] Weisstein, Eric W., Complex Exponentiation,. From MathWorld – A Wolfram Web Resource. http: /mathworld. wolfram. com/ComplexExponentiation. html.

[6] Edigles Guedes and Prof. Dr. Raja Rama Gandhi, Investigations on the Theory of Riemann Zeta Function I: New Functional Equation, Integral Representation and Laurent Expansion for Riemann Zeta Function, May 1, (2013).

DOI: 10.18052/www.scipress.com/bmsa.5.17
Show More Hide