A New Hilbert-type Integral Inequality with the Homogeneous Kernel of Real Degree Form and the Integral in Whole Plane

Xie Zitian\(^1\) K. Raja Rama Gandhi\(^2\) Zheng Zeng\(^3\)

\(^1\)Department of Mathematics, Zhaoqing University, Zhaoqing, Guangdong, China 526061
\(^2\)Resource person in Oxford University, India and BITS-Vizag, INDIA.
\(^3\)Department of Mathematics, Shaoguan University, Shaoguan, Guangdong, China512005

Keywords: Hilbert-type integral inequality, weight function, Hölder’s inequality, function.

Abstract: In this paper, we build a new Hilbert's inequality with the homogeneous kernel of real order and the integral in whole plane. The equivalent inequality is considered, the best constant factor is calculated using \(\Psi\) function.

1** INTRODUCTION**

If \(f(x), g(x) \geq 0,\) such that \(0 < \int_0^\infty f^2(x) \, dx < \infty, 0 < \int_0^\infty g^2(x) \, dx < \infty;\) then

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} \, dx \, dy < \pi \left(\int_0^\infty f^2(x) \, dx \right)^{1/2} \left(\int_0^\infty g^2(x) \, dx \right)^{1/2},
\]

where the constant factor \(\pi\) is the best possible. Inequality (1.1) is well-known as Hilbert's integral inequality, which has been extended by Hardy-Riesz as [2]:

If \(p > 1, 1/p + 1/q = 1, f(x), g(x) \geq 0;\) such that \(0 < \int_0^\infty f^p(x) \, dx < \infty,\) and \(0 < \int_0^\infty g^q(x) \, dx < \infty;\) then we have the following Hardy-Hilbert's integral inequality:

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} \, dx \, dy < \frac{\pi}{\sin(\pi/p)} \left(\int_0^\infty f^p(x) \, dx \right)^{1/p} \left(\int_0^\infty g^q(x) \, dx \right)^{1/q},
\]

where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) also is the best possible.

Hilbert's inequality attracts more attention in recent years. Actually, inequalities (1.1) and (1.2) have many generalizations and variations. (1.1) has been strengthened by Yang and others (including double series inequalities) [3, 4, 6-21].

In 2008, Zitian Xie and Zheng Zeng gave a new Hilbert-type inequality [4] as follows:

If \(a > 0, b > 0, c > 0, r > 1, 1/p + 1/q = 1, f(x), g(x) \geq 0;\) such that

\[
0 < \int_0^\infty f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_0^\infty g^{q(r-1)/r}(x) \, dx < \infty,
\]

then

\[
K = \frac{\pi}{(a+b)(a+c)(c+b)}
\]

where the constant factor \(\frac{\pi}{(a+b)(a+c)(c+b)}\) is the best possible.

In 2010, Jianhua Xhong and Bicheng Yang gave a new Hilbert-type inequality [5] as follows:

Assume that

\[
\lambda, \rho > 0, (\rho \neq 1), r > 1, 1/p + 1/q = 1, 1/r + 1/s = 1, \phi(x) = x^{p(1-\frac{1}{\rho})}, \psi(x) = x^{q(1-\frac{1}{\rho})}, x \in (0, \infty),
\]

\[
K = \Gamma(\beta+1) \sum_{k=0}^{\infty} (-1)^k \left[\frac{1}{(k+\lambda/r)^{\beta+1}} + \frac{1}{(k+\lambda/s)^{\beta+1}} \right], \text{and} \ f, g \geq 0,
\]
(1) for \(p > 1 \) we have the following equivalent inequalities:
\[
\int_0^1 \int_0^1 \frac{\ln(x/y)}{|x-y|}(f(x)g(y))\,dx\,dy < K \left\langle f \right\rangle_{p,r} \left\langle g \right\rangle_{r,p}.
\]
(2) For \(0 < p < 1 \) the reverse of (1.5) with the best constant factor \(K \).
\[
\int_0^1 \int_0^1 \frac{\ln(x/y)}{|x-y|}(f(x)g(y))\,dx\,dy > K \left\langle f \right\rangle_{p,r} \left\langle g \right\rangle_{r,p}.
\]

The main purpose of this paper is to build a new Hilbert-type inequality with the homogeneous kernel of real order and the integral in whole plane, by estimating the weight function using \(\Psi \) function. The equivalent inequality is considered.

We knew that (in this paper, \(\gamma \) is the Euler's constant.)
\[
\Psi(z) = \frac{\Gamma(z)}{\Gamma(z+1)} = -\gamma + \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - \frac{1}{n+z} \right), \quad \Psi(1) = -\gamma, \quad \Psi\left(\frac{1}{2}\right) = -\gamma - 2\ln2.
\]

Recent XIE Zitin and ZHOU Qinghua prove that the expression of the \(\Psi \)-function admits a finite expression in elementary function for rational number \(z \), and prove the [6]
\[
\Psi\left(\frac{a}{b}\right) = \frac{\Gamma\left(\frac{a}{b}\right)}{\Gamma\left(\frac{a}{b}+1\right)} = -\ln b - \gamma - \ln 2 - \frac{\pi}{2} \cot \frac{\pi}{b} + \sum_{k=1}^{b-1} \cos \frac{2\pi k}{b} \ln \sin \frac{k\pi}{b}
\]
and have
\[
\psi\left(\frac{1}{3}\right) = -\gamma - \ln 3 - \ln 2 - \frac{\pi}{2} \cot \frac{\pi}{3} + \cos \frac{2\pi}{3} \ln \sin \frac{\pi}{3} + \cos \frac{\pi}{3} \ln \sin \frac{2\pi}{3} = -\gamma - \frac{3\ln 3 - \pi}{2\sqrt{3}};
\]
\[
\psi\left(\frac{2}{3}\right) = -\gamma - \frac{3\ln 3 + \pi}{2\sqrt{3}};
\]
\[
\psi\left(\frac{1}{4}\right) = -\gamma - 3\ln 2 - \frac{\pi}{2};
\]
\[
\psi\left(\frac{3}{4}\right) = -\gamma - 3\ln 2 + \frac{\pi}{2};
\]
\[
\psi\left(\frac{1}{6}\right) = -\gamma - 2\ln \sqrt{3} = \psi\left(\frac{5}{6}\right);\]
\[
\psi\left(\frac{2}{5}\right) = -\gamma - 2\ln \sqrt{3} - \frac{\pi}{4}\ln(\sqrt{5} - 1) - \frac{\sqrt{5}}{2} \ln 2 - \frac{\pi}{4} (5 + 3\sqrt{5})\ln(10 - 2\sqrt{5});
\]
\[
\psi\left(\frac{1}{5}\right) = -\gamma - 2\ln \sqrt{3} + \frac{\sqrt{5}}{2} \ln(\sqrt{5} - 1) - \frac{\sqrt{5}}{2} \ln 2 + \frac{\pi}{4} (5 + 3\sqrt{5})\ln(10 - 2\sqrt{5});
\]

In the following, we always suppose that:

1/ \(p + 1/q = 1, p > 1, \min\{a\lambda + b\mu, a\mu + b\lambda\} > -1, a\lambda + b\mu = 0, a\mu + b\lambda = 0, \mu > 0, \lambda > 0. \)

2 SOME LEMMAS
We start by introducing some Lemmas.

Lemma 2.1 If \(s > 0, r \neq 0, r > -s \), then
Proof. we obtain,'

1) \[\int_0^1 x^{-r} \ln(1 - x^r) \, dx = -\frac{1}{r} \left[\gamma + \psi \left(\frac{r + s}{s} \right) \right] \]

2) \[\int_0^1 x^{-r} \ln(1 + x^r) \, dx = \frac{1}{r} \ln 2 - \frac{1}{2r} \left[\psi \left(\frac{r + 2s}{2s} \right) - \psi \left(\frac{r + s}{2s} \right) \right] \]

The lemma is proved. In particular, if \(r > -1, r \neq 0 \), then

\[\int_0^1 u^{-r} \ln \frac{u^2 + u + 1}{u - u + 1} \, du = \int_0^1 u^{-r} \ln(1 + u^3) \, du - \int_0^1 u^{-r} \ln(1 + u) \, du \]

\[= \frac{1}{r} \left[\psi(r + 1) - \psi \left(\frac{r + 3}{6} \right) + \frac{1}{2r} \left[2\psi \left(\frac{r}{6} \right) - \psi \left(\frac{r}{2} \right) - \psi \left(\frac{r + 3}{6} \right) - 2\psi \left(\frac{r}{2} \right) + \psi \left(\frac{r + 1}{2} \right) \right] \right] \]

(\text{using } \psi(x + 1) = \psi(x) + \frac{1}{x})

\[= \frac{1}{r} \left[\psi \left(\frac{r}{3} \right) + \frac{1}{2r} \left[\psi \left(\frac{r}{6} \right) - \psi \left(\frac{r + 3}{6} \right) - \psi \left(\frac{r}{2} \right) + \psi \left(\frac{r + 1}{2} \right) \right] \right] \]

\[= \frac{1}{r} \left[\psi \left(\frac{r}{3} \right) + \frac{1}{2r} \left[2\psi \left(\frac{r}{6} \right) - \psi \left(\frac{r}{2} \right) - \psi \left(\frac{r + 3}{6} \right) - 2\psi \left(\frac{r}{2} \right) + \psi \left(\frac{r}{2} \right) + \psi \left(\frac{r + 1}{2} \right) \right] \right] \]

(\text{using } \psi(x + \frac{1}{2}) + \psi(x) = 2\psi(2x) - \psi \left(\frac{r + 1}{2} \right) \]

\[= \frac{2}{r} \left[\psi \left(\frac{r}{3} \right) + \frac{1}{r} \left[\psi \left(\frac{r}{6} \right) - \psi \left(\frac{r}{2} \right) \right] \right] \]

(2.2)
Lemma 2.2 Define the weight functions as follow:

\[w(x) := \int_{x}^{\infty} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{e} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{d} \, dy, \]

\[\tilde{w}(y) := \int_{y}^{\infty} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{e} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{d} \, dx, \]

Then

\[w(x) = \tilde{w}(y), \]

Proof We only prove that \(w(x) = k \) for \(x \in (\infty, 0) \)

Using lemma 2.1, setting \(y = ux \), and \(y = -ux \)

\[w(x) := \int_{0}^{\infty} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{e} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{d} \, dy \]

\[= w_{1} + w_{2}, \]

Then

\[w_{1} = \int_{0}^{1} u^{-\alpha \lambda + b \mu} \ln u^{\alpha \lambda + b \mu} u^{1} \, du + \int_{1}^{\infty} u^{-\alpha \lambda + b \mu} \ln u^{\alpha \lambda + b \mu} u^{1} \, du \]

\[= \int_{0}^{1} u^{-\alpha \lambda + b \mu} \ln u^{\alpha \lambda + b \mu} u^{1} \, du + \int_{1}^{\infty} u^{-\alpha \lambda + b \mu} \ln u^{\alpha \lambda + b \mu} u^{1} \, du \]

\[w_{2} = \int_{0}^{1} u^{-\alpha \lambda + b \mu} \ln u^{\alpha \lambda + b \mu} u^{1} \, du + \int_{1}^{\infty} u^{-\alpha \lambda + b \mu} \ln u^{\alpha \lambda + b \mu} u^{1} \, du \]

And

\[w = w_{1} + w_{2}, \]

Similarly, setting \(x = y / u \), and \(x = -y / u \)

\[\tilde{w}(y) = \int_{0}^{\infty} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{e} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{d} \, dx \]

\[+ \int_{0}^{\infty} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{e} \left(\frac{\ln(\max(|x|,|y|))}{\ln(\min(|x|,|y|))} \right)^{d} \, dx \]
Lemma 2.3 For \(\varepsilon > 0 \); and \(\min \{ a\mu + b\lambda - 2\varepsilon / q, a\lambda + b\mu - 2\varepsilon / q \} > -1 \), define both functions, \(\widetilde{\mathcal{f}} \), \(\widetilde{\mathcal{g}} \) as follow:

\[
\widetilde{\mathcal{f}}(x) = \begin{cases}
 x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q}, & \text{if } x \in (1, \infty), \\
 0, & \text{if } x \in [-1, 1], \\
 (-x)^{a(h(u-\lambda)) - 1 - 2\varepsilon / q}, & \text{if } x \in (-\infty, -1), \\
 x^{b(h(u-\lambda)) - 1 - 2\varepsilon / q}, & \text{if } x \in (1, \infty), \\
 0, & \text{if } x \in [-1, 1], \\
 (-x)^{b(h(u-\lambda)) - 1 - 2\varepsilon / q}, & \text{if } x \in (-\infty, -1),
\end{cases}
\]

\[
\widetilde{\mathcal{g}}(x) = \begin{cases}
 x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q}, & \text{if } x \in (1, \infty), \\
 0, & \text{if } x \in [-1, 1], \\
 (-x)^{a(h(u-\lambda)) - 1 - 2\varepsilon / q}, & \text{if } x \in (-\infty, -1),
\end{cases}
\]

Then

\[
I(\varepsilon) := \varepsilon \left(\int_{-\infty}^{\infty} |x|^{\frac{a(h(u-\lambda)) - 1 - 2\varepsilon / q - 1}{p}} \left| \int_{-\infty}^{\infty} \frac{x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q} \ln \frac{x^2 + y^2}{x^2 + y^2}}{x^2 + y^2} \, dx \right| dy \right)^{1/p} = 1;
\]

\[
\bar{I}(\varepsilon) := \varepsilon \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q} \ln \frac{x^2 + y^2}{x^2 + y^2}}{x^2 + y^2} \, dx \right) dy \right)^{1/q} = 1.
\]

Proof

Easily

\[
I(\varepsilon) = \varepsilon \left(\int_{-\infty}^{\infty} \frac{x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q} \ln \frac{x^2 + y^2}{x^2 + y^2}}{x^2 + y^2} \, dx \right) dy = 1.
\]

Let \(y-Y \), using \(\widetilde{\mathcal{f}}(-x) = \widetilde{\mathcal{f}}(x) \) and

\[
\int_{-\infty}^{\infty} \frac{\ln \frac{x^2 + y^2}{x^2 + y^2}}{x^2 + y^2} \, dx = \ln \frac{x^2 + y^2}{x^2 + y^2}.
\]

we have that

\[
\bar{I}(\varepsilon) := 2\varepsilon \left(\int_{-\infty}^{\infty} \frac{x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q} \ln \frac{x^2 + y^2}{x^2 + y^2}}{x^2 + y^2} \, dx \right) dy
\]

is an even function on \(x \), then

\[
\bar{I}(\varepsilon) = 4\varepsilon \left(\int_{0}^{\infty} \frac{x^{a(h(u-\lambda)) - 1 - 2\varepsilon / q} \ln \frac{x^2 + y^2}{x^2 + y^2}}{x^2 + y^2} \, dx \right) dy
\]

\[
:= I_1 + I_2
\]
Setting $y = tx$ then

\[
I_1 = 2\varepsilon \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} y^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{x, y\} \right)^{\lambda}}{\left(\max\{x, y\} \right)^{\mu}} \ln \frac{x^2 + y^2}{x^2 - xy + y^2} \, dy \right) \, dx
\]

\[
= 2\varepsilon \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx
\]

\[
= 2\varepsilon \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx
\]

\[
+ 2\varepsilon \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx
\]

\[
= \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} s^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, s\} \right)^{\lambda}}{\left(\max\{1, s\} \right)^{\mu}} \ln \frac{s^2 + 1^2}{s^2 - s + 1^2} \, ds \right) \, dx
\]

\[
= \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx
\]

\[
+ \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx
\]

\[
= \frac{\left(\int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx}{\int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} t^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{1, t\} \right)^{\lambda}}{\left(\max\{1, t\} \right)^{\mu}} \ln \frac{t^2 + 1^2}{t^2 - t + 1^2} \, dt \right) \, dx}
\]

Similarly

\[
I_2 = 2\varepsilon \int_{\lambda}^{\infty} x^{\alpha+\beta-2\varepsilon/\theta} \left(\int_{\lambda}^{\infty} y^{\alpha+\beta-2\varepsilon/\theta} \frac{\left(\min\{x, y\} \right)^{\lambda}}{\left(\max\{x, y\} \right)^{\mu}} \ln \frac{x^2 + y^2}{x^2 + y^2} \, dy \right) \, dx
\]

by lemma 2.2, we have

\[
\tilde{T}(\varepsilon) = I_1 + I_2
\]

\[
= \frac{\psi(\alpha + \beta - 2\varepsilon/\theta)}{\alpha + \beta - 2\varepsilon/\theta} - \psi\left(\frac{\alpha + \beta - 2\varepsilon/\theta}{3} \right)
\]

\[
+ \frac{1}{\alpha + \beta - 2\varepsilon/\theta} \left[\psi(\alpha + \beta - 2\varepsilon/\theta) - \psi\left(\frac{\alpha + \beta - 2\varepsilon/\theta}{3} \right) \right]
\]

\[
+ \frac{2}{\alpha + \beta - 2\varepsilon/\theta} \left[\psi(\alpha + \beta - 2\varepsilon/\theta) - \psi\left(\frac{\alpha + \beta - 2\varepsilon/\theta}{3} \right) \right]
\]

\[
+ \frac{1}{\alpha + \beta - 2\varepsilon/\theta} \left[\psi(\alpha + \beta - 2\varepsilon/\theta) - \psi\left(\frac{\alpha + \beta - 2\varepsilon/\theta}{3} \right) \right] + \eta_1(\varepsilon) + \eta_2(\varepsilon)
\]

we know that $\psi(x)$ is a continuous function, then $\lim_{\varepsilon \to 0^-} \tilde{T}(\varepsilon) = k$

The lemma is proved.
Lemma 2.4 If \(f(x) \) is a nonnegative measurable function, and \(0 < \int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} f(x) \, dx < \infty \)

Then

\[
J = \int_{\mathbb{R}} |y|^{\beta(u-1)} \left(\int_{\mathbb{R}} f(x) \left(\frac{\min \{ |x|, |y| \}^p}{\max \{ |x|, |y| \}^p} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \right)^\theta \, dy
\]

\[
\leq k^\theta \int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} f^\theta(x) \, dx
\]

Proof By lemma 2.2, we find

\[
\left(\int_{\mathbb{R}} f(x) \left(\frac{\min \{ |x|, |y| \}^p}{\max \{ |x|, |y| \}^p} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \right)^\theta
\]

\[
= \left(\int_{\mathbb{R}} \left(\min \{ |x|, |y| \} \right)^{\frac{p}{\theta}} \left(\max \{ |x|, |y| \} \right)^{-\frac{p}{\theta}} \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \right)^\theta
\]

\[
\leq k^\theta \int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} f^\theta(x) \, dx
\]

3 MAIN RESULTS

Theorem 3.1 If \(p > 1 \), both functions, \(f(x) \) and \(g(x) \), are nonnegative measurable functions, and satisfy

\[
0 < \int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} f(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} g(x) \, dx < \infty
\]

then

\[
I^* = \int_{\mathbb{R}} f(x) g(x) \left(\frac{\min \{ |x|, |y| \}^p}{\max \{ |x|, |y| \}^p} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy
\]

\[
< k \left(\int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} f^\theta(x) \, dx \right)^{\frac{1}{\theta}} \left(\int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} g^\theta(x) \, dx \right)^{\frac{1}{\theta}}
\]

(3.1)

And

\[
J = \int_{\mathbb{R}} |y|^{\beta(u-1)} \left(\int_{\mathbb{R}} f(x) \left(\frac{\min \{ |x|, |y| \}^p}{\max \{ |x|, |y| \}^p} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \right)^\theta \, dy
\]

\[
< k^\theta \int_{\mathbb{R}} |x|^{p(\frac{1}{p} - 1)} f^\theta(x) \, dx
\]

(3.2)

Inequalities (3.1) and (3.2) are equivalent, and where the constant factors \(k \) and \(k^\theta \) are the best possible.
Proof If there exist a \(y \in (-\infty, 0) \cup (0, \infty) \), such that (2.7) takes the form of equality, then there exists constants \(M \) and \(N \), such that they are not all zero, and
\[
M \left| \frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right| f^p(x) = N \left| \frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right|
\]
a.e. In \((-\infty, \infty) \).

Hence, there exists a constant \(C \), such that
\[
M \left| \frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right| f^p(x) = N \left| \frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right| = C \text{ a.e. in } (-\infty, \infty)
\]
It means that \(M = 0 \). In fact, if \(M \neq 0 \), then
\[
\left| \frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right| f^p(x) = \frac{C}{M} \text{ a.e. in } (-\infty, \infty)
\]
which contradicts the fact that \(f^p(x) \) is not a constant function.

By Hölder's inequality, with weight (3.2), we have,
\[
J : = \int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^p(x) \left(\min\left\{ \frac{[x]^{\mu(y)}}{[y]^{\mu(y)}}, \chi \right\} \right)^{1/p} \left(\max\left\{ \frac{[x]^{\mu(y)}}{[y]^{\mu(y)}}, \chi \right\} \right)^{1/q} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx
\]
\[
\leq J^{1/p} \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] g^q(y) dy \right)^{1/q}
\]
Using (3.2), we have (3.1).

Setting
\[
g(y) = \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) \left(\min\left\{ \frac{[x]^{\mu(y)}}{[y]^{\mu(y)}}, \chi \right\} \right)^{1/p} \left(\max\left\{ \frac{[x]^{\mu(y)}}{[y]^{\mu(y)}}, \chi \right\} \right)^{1/q} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx
\]
Then
\[
J = \int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] g^q(y) dy
\]
\[
< k \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx \right)^{1/p} \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx \right)^{1/q}
\]
\[
= J^{1/p} \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx \right)^{1/q}
\]
Inequalities (3.1) and (3.2) are equivalent.

If the constant factor \(k \) in (3.1) is not the best possible, then there exists a positive \(h \) (with \(h < k \)), such that
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y) \left(\min\left\{ \frac{[x]^{\mu(y)}}{[y]^{\mu(y)}}, \chi \right\} \right)^{1/p} \left(\max\left\{ \frac{[x]^{\mu(y)}}{[y]^{\mu(y)}}, \chi \right\} \right)^{1/q} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx dy
\]
\[
< h \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx \right)^{1/p} \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] g^q(y) dy \right)^{1/q}
\]
For \(\epsilon > 0 \) by (2.5), using lemma 2.3, we have
\[
k + o(1) < \epsilon h \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] f^q(x) dx \right)^{1/p} \left(\int_{-\infty}^{\infty} \left[\frac{[x]^{\mu(1-y(\mu-k)) - 1}}{[y]^{\mu(1-y(\mu-k))}} \right] g^q(y) dy \right)^{1/q} = h
\]
Hence we find, \(k + o(1) < \epsilon h \): For \(\epsilon \rightarrow 0^+ \) it follows that \(k \leq \hat{h} \) which contradicts the fact that \(h < k \).

Hence the constant \(k \) in (3.1) is the best possible. Thus we complete the prove of the theorem.
Theorem 3.2 If \(1 > p > 0 \); both functions, \(f(x) \) and \(g(x) \), are nonnegative measurable functions, and satisfy

\[
0 < \int_{-\infty}^{\infty} |x|^{p([1-(\mu-\lambda)]^{-1})} f^p(x)dx \leq \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} |x|^{q([1-(\mu-\lambda)]^{-1})} g^q(x)dx < \infty
\]

\[
\int_{-\infty}^{\infty} f(x)g(y)\left(\frac{\min\{\|x\|,\|y\|\}\|x\|}{\max\{\|x\|,\|y\|\}\|y\|}\right)^{\frac{1}{r}} \left|\ln \frac{x^2 + xy + y^2}{x^2 + y^2}\right| dx dy > k\left(\int_{-\infty}^{\infty} |x|^{p([1-(\mu-\lambda)]^{-1})} f^p(x)dx\right)^{1/p}\left(\int_{-\infty}^{\infty} |x|^{q([1-(\mu-\lambda)]^{-1})} g^q(x)dx\right)^{1/q}
\]

\[
J > k^p\int_{-\infty}^{\infty} |x|^{p([1-(\mu-\lambda)]^{-1})} f^p(x)dx
\]

And

\[
L := \int_{-\infty}^{\infty} |x|^{p([1-(\mu-\lambda)]^{-1})} \left(\int_{-\infty}^{\infty} \left(\frac{\min\{\|x\|,\|y\|\}\|x\|}{\max\{\|x\|,\|y\|\}\|y\|}\right)^{\frac{1}{r}} \left|\ln \frac{x^2 + xy + y^2}{x^2 + y^2}\right| g^q(y)dy\right)^{\frac{1}{q}} dx
\]

\[
< k^q\int_{-\infty}^{\infty} |x|^{q([1-(\mu-\lambda)]^{-1})} g^q(x)dy
\]

Inequalities (3.5), (3.6), and (3.7) are equivalent, and where the constant factors \(k \), \(k^p \), and \(k^q \) are the best possible.

Proof By the reverse Holder’s inequality and the same way, we can obtain the reverse forms of (2.7) and (3.3). And then we deduce the (3.5), by the same way, we obtain (3.6).

Setting \(g(y) \) as the theorem 1, we obtain \(J > 0 \), if \(J = \infty \), we have (3.6). If \(0 < J \leq \infty \), by (3.5)

\[
\int_{-\infty}^{\infty} |x|^{p([1-(\mu-\lambda)]^{-1})} g^q(y)dy = J = t^t
\]

and we have (3.6), and inequalities (3.5) and (3.6) are equivalent.

Setting

\[
[g(x)]_n = \left\{ \begin{array}{ll}
1, & g(x) > 1, \\
\frac{1}{n}, & 1 \leq g(x) < n, \\
0, & g(x) \leq 1.
\end{array} \right.
\]

Then \(\exists n_0 \in \mathbb{N} \), such that \(n > n_0 \); we have

\[
\int_{E_n} |x|^{p([1-(\mu-\lambda)]^{-1})} g^q(y)dy > 0,
\]

And

\[
[f(x)]_n = |x|^{p([1-(\mu-\lambda)]^{-1})} \left(\int_{E_n} [g(x)]_n \left(\frac{\min\{\|x\|,\|y\|\}\|x\|}{\max\{\|x\|,\|y\|\}\|y\|}\right)^{\frac{1}{r}} \left|\ln \frac{x^2 + xy + y^2}{x^2 + y^2}\right| dy\right)^{\frac{1}{q}} dx
\]

\[
\left(\int_{E_n} [g(x)]_n \left(\frac{\min\{\|x\|,\|y\|\}\|x\|}{\max\{\|x\|,\|y\|\}\|y\|}\right)^{\frac{1}{r}} \left|\ln \frac{x^2 + xy + y^2}{x^2 + y^2}\right| dy\right)^{\frac{1}{q}} dx
\]

Then \(\exists n_0 \in \mathbb{N} \), such that \(n > n_0 \); we have

\[
\int_{E_n} |x|^{p([1-(\mu-\lambda)]^{-1})} g^q(y)dy < \infty.
\]
In particular, from (4.1) we get the following particular cases:

1) If $\lambda + \mu = 4$; then $k = 2^2 \left[\psi \left(2 \right) - \psi \left(\frac{2}{3} \right) \right] + \frac{2}{3} \left[\psi \left(\frac{1}{3} \right) - \psi \left(1 \right) \right] = 2 + \frac{3 \ln 3 - \sqrt{3} \pi}{\sqrt{2} \pi}$, we have

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) \left(\frac{\min \{x, y, \lambda \}^3}{\max \{x, y, \lambda \}^3} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy < \left(2 + \frac{3 \ln 3 - \sqrt{3} \pi}{\sqrt{2} \pi} \right) \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} f^p (x) \, dx \right)^{\frac{1}{p}} \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} g^q (x) \, dx \right)^{\frac{1}{q}}
\]

(4.2)

2) If $\lambda + \mu = 3$; then $k = \frac{8}{3} \left[\psi \left(\frac{3}{2} \right) - \psi \left(\frac{1}{2} \right) \right] + \frac{4}{3} \left[\psi \left(\frac{1}{4} \right) - \psi \left(\frac{3}{4} \right) \right] = \frac{4}{3} (4 - \pi)$, we have

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) \left(\frac{\min \{x, y, \lambda \}^3}{\max \{x, y, \lambda \}^3} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy < \left(2 + \frac{3 \ln 3 - \sqrt{3} \pi}{\sqrt{2} \pi} \right) \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} f^p (x) \, dx \right)^{\frac{1}{p}} \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} g^q (x) \, dx \right)^{\frac{1}{q}}
\]

(4.3)

3) If $\lambda + \mu = 2$; then $k = 4 \left[\psi \left(1 \right) - \psi \left(\frac{1}{3} \right) \right] + 2 \left[\psi \left(\frac{1}{6} \right) - \psi \left(\frac{1}{2} \right) \right] = \ln 3 + \frac{2 \pi}{\sqrt{2} \pi}$, we have

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) \left(\frac{\min \{x, y, \lambda \}^3}{\max \{x, y, \lambda \}^3} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy < \left(6 \ln 3 + \frac{2 \pi}{\sqrt{3} \pi} \right) \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} f^p (x) \, dx \right)^{\frac{1}{p}} \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} g^q (x) \, dx \right)^{\frac{1}{q}}
\]

(4.4)

B) Let $\lambda = \mu$ in (3.1), then we have an integral inequality with the homogeneous kernel of 0 degree form as follows:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) \left(\frac{\min \{x, y, \lambda \}^3}{\max \{x, y, \lambda \}^3} \right) \ln \frac{x^2 + xy + y^2}{x^2 + y^2} \, dx \, dy < k(\lambda) \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} f^p (x) \, dx \right)^{\frac{1}{p}} \left(\int_{-\infty}^{\infty} x^{\psi \left(\lambda, \mu \right)} g^q (x) \, dx \right)^{\frac{1}{q}}
\]

(4.5)

\[
k(\lambda) = \frac{4}{x^2} \left[\psi \left(\frac{2}{3} \right) - \psi \left(\frac{1}{3} \right) \right] + \frac{2}{x^2} \left[\psi \left(\frac{1}{6} \right) - \psi \left(\frac{1}{2} \right) \right]
\]

There

References

[3] Zitian Xie and Zheng Zeng, A Hilbert-type integral inequality whose kernel is a homogeneous form of degree-331

