This work is licensed under a
Creative Commons Attribution 4.0 International License
Atashgar, A.B., Seifi, A.: Optimal design of multi-response experiments using semi-definite programming, Optim. Eng., 10, 75-90 (2009).
Atieg, A., Watson, G.A.: Use of Anziam J., 45 4, C187-C200 (2004). l p norms in fitting curves and surfaces to data.
Bector, C.R., Chandra, S., Dutta, J.: Principles of optimization theory, Narosa publishing house, New Delhi, (2005).
Boyd, S., Vanderberghe, L.: CRCD programme: Convex optimization for engineering analysis and design, Proceedings of the American control conference, Seetle, Washington, (1996).
Boyd, S., Vanderberghe, L.: Convex optimization, Cambridge University press, Cambridge, (http: /www. stanford. edu/~boyd/cvxbook), (2004).
Butt, S.E., Cavalier, T.M.: An efficient algorithms for facility location in the presence of forbidden regions, Eur.J. Oper. Res., 90, 56-70 (1996).
Chares, R., Glineur, F.: An interior-point method for the single facility location problem with mixed norms using a conic formulation, Ecore discussion paper, Universite Catholique de Louvain, (2007).
Chowell, G., Nishiura, H and Bettencourt, L.M.A.: Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J.R. Soc. Interface, 4, 155-166 (2007).
Dasarathy, R., White, L.J.: A maxmin location problem, Oper. Res., 28 6, 1385-1401 (1980).
Drezner, Z., Klamroth, K., Schobel, A and Wesolowsky, G.O.: The Weber Problem, In: Z. Drezner, H.W. Hamacher (Eds. ): Location analysis: Applications and theory, 1-36, Springer Verlag, (2002).
Drezner, Z., Scott, C. and Song, J-S.: The central warehouse location problem revisited, IMA J. Mgt. Math., 14, 321-326 (2003).
Ferreira, P.S.G.: The existence and uniqueness of the minimum norm solution to certain linear and nonlinear problems, Signal Processing, 55, 137-139 (1996).
Hindi, H.: A tutorial on convex optimization, Palo Alto research centre (PARC), Palo Alto, California [online] available at http: /www2. parc. com/spl/members/hhindi/reports/CvxOptTutPaper. pdf, accessed 5 October, (2010).
Kanzow, C., Qi, H. and Qi, L.: On the minimum norm solution of linear programs, Applied Math. Report, AMR00 14, 1-11 (2000).
Kocak, H.: Convex programming approach to the shopping mall (AVM) site selection problem and Sakarya, Eur.J. Social Sc. 13 2, 219-228 (2010).
Kreyszig, E.: Introductory functional analysis with applications(student edition), John Wiley, Singapore, (2005).
Kuhn, H.W.: A note on Fermat's problem, Mathematical Programming, 4, 98-107 (1973).
Love, F.R., Morris, J. G and Wesolowsky, G.O.: Facilities location: models and methods, Elsevier, New York, (1988).
Moarref, M., Sayyaadi, H.: Facility location optimization via multi-agent robotic systems, IEEE Trans. Robotics Automation, (2008).
Oniyide, O.R., Osinuga, I.A.: On the existence of best sample in simple random sampling, J. Math. Assoc. Nigeria, 33 2b, 290-294 (2006).
Osinuga, I.A., Oniyide, O.R.: An overview of norm approximation applications, Far East J. Math. Sci., 43 2, 189-202 (2010).
Sciences Association) Conference, Windhoek, Namibia, 2, 54-60 (2007).
Schandl, B., Klamroth, K. and Wiecek, M.M.: Norm-based approximation in bicriteria programming, Computational Optim. Appl., 20, 23-42 (2001).
Schandl, B., Klamroth, K. and Wiecek, M.M.: Norm-based approximation in convex multicriteria programming, In: B. Freischmann, R. Lasch, U. Derigs, W. Domshke and U. Rieder (Eds. ): Operations Research Proceedings 2000, 8-13, Springer Verlag, (2001).
Schandl, B., Klamroth, K. and Wiecek, M.M.: Norm-based approximation in multicriteria programming, Computers Math. Appl., 44, 925-942 (2002).
Srebro, R.: Iterative refinement of the minimum norm solution of the bioelectric inverse problem, IEEE Trans. Biomedical Eng., 43 5, 547-552 (1996).
Sundaram, R.K.: A first course in optimization theory, Cambridge University press, New York, (1996).
Wesolowsky, G.O.: The Weber problem: History and Perspectives, Location Science, 1, 5-23 (1992).