ON DEGREE OF APPROXIMATION BY PRODUCT MEANS OF
CONJUGATE SERIES OF A FOURIER SERIES

S. K. Paikray¹, R. K. Jati², N. C. Sahoo³, U.K. Misra⁴

¹P.G. Department of Mathematics, Ravenshaw University, Cuttack-753003, Odisha, India
²Department of Mathematics, DRIEMS, Tangi, Cuttack, Odisha, India
³Department of Mathematics, S.B. Women’s College (Auto), Cuttack, Odisha, India
⁴Science and Technology, Pallur Hills, Golanthara-761008, Odisha, India

Keywords: Degree of Approximation f ∈ Lip(α, r) class of function, (E, q) mean, (N, pₙ) mean, (E, q) product mean, Fourier series, Conjugate of the Fourier series, Lebesgue integral

Abstract: In this paper a theorem on degree of approximation of a function f ∈ Lip(α, r) by product summability (E, q)(N, pₙ) of conjugate series of Fourier series associated with f has been established.

1. Introduction

Let \(\sum aₙ \) be a given infinite series with the sequence of partial sums \(\{ sₙ \} \). Let \(\{ pₙ \} \) be a sequence of positive real numbers such that

\[
Pₙ = \sum_{\nu=0}^{n} pₙ \rightarrow \infty, \quad \text{as} \quad n \rightarrow \infty, \quad (P₋ᵢ = p₋ᵢ = 0, i \geq 0).
\]

(1.1)

The sequence –to–sequence transformation

\[
tₙ = \frac{1}{Pₙ} \sum_{\nu=0}^{n} pₙ sₙ \quad (1.2)
\]

defines the sequence \(\{ tₙ \} \) of the \((\bar{N}, pₙ) \)-mean of the sequence \(\{ sₙ \} \) generated by the sequence of coefficient \(\{ pₙ \} \). If

\[
tₙ \rightarrow s \quad \text{as} \quad n \rightarrow \infty
\]

(1.3)

then the series \(\Sigma aₙ \) is said to be \((\bar{N}, pₙ) \) summable to \(s \).

The conditions for regularity of \((\bar{N}, pₙ) \)-summability are easily seen to be[1]

\[
(i) \quad Pₙ \rightarrow \infty, \text{as} \quad n \rightarrow \infty.
\]

\[
(ii) \quad \sum_{\nu=0}^{n} pₙ \leq C \left| Pₙ \right|, \text{as} \quad n \rightarrow \infty.
\]

(1.4)

The sequence –to–sequence transformation, [1]

\[
Tₙ = \frac{1}{(1 + q)^{n}} \sum_{\nu=0}^{n} \left(\begin{array}{c} n \\ \nu \end{array} \right) q^{n-\nu} sₙ
\]

(1.5)

defines the sequence \(\{ Tₙ \} \) of the \((E, q) \)-mean of the sequence \(\{ sₙ \} \). If

\[
Tₙ \rightarrow s \quad \text{as} \quad n \rightarrow \infty,
\]

then the series \(\Sigma aₙ \) is said to be \((E, q) \) summable to \(s \).
Clearly \((E, q)\) method is regular. Further, the \((E, q)\) transform of the \((N, p_n)\) transform of \(\{s_n\}\) is defined by

\[
\tau_n = \frac{1}{(1+q)^n} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} t_k
\]

\[
= \frac{1}{(1+q)^n} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{p_k} \sum_{\ell=0}^{k} p_{\ell} s_{\ell} \right\}
\]

(1.7)

If

\[
\tau_n \to s, \quad \text{as} \quad n \to \infty,
\]

(1.8)

then \(\sum a_n\) is said to be \((E, q)(N, p_n)\)-summable to \(s\).

Let \(f(t)\) be a periodic function with period \(2\pi\) and \(L\)-integrable over \((-\pi, \pi)\). The Fourier series associated with \(f\) at any point \(x\) is defined by

\[
f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x)
\]

(1.9)

and the conjugate series of the Fourier series (1.9) is

\[
\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} B_n(x)
\]

(1.10)

Let \(s_n(f; x)\) be the \(n\)-th partial sum of (1.10). The \(L^\infty\)-norm of a function \(f: \mathbb{R} \to \mathbb{R}\) is defined by

\[
\|f\|_{\infty} = \sup \left\{ f(x) : x \in \mathbb{R} \right\}
\]

(1.11)

and the \(L^v\)-norm is defined by

\[
\|f\|_v = \left(\int_0^{2\pi} |f(x)|^v \, dx \right)^{1/v}, \quad v \geq 1
\]

(1.12)

The degree of approximation of a function \(f: \mathbb{R} \to \mathbb{R}\) by a trigonometric polynomial \(P_n(x)\) of degree \(n\) under norm \(\|\|\) is defined by [5].

\[
\|P_n - f\|_{\infty} = \sup \left\{ |P_n(x) - f(x)| : x \in \mathbb{R} \right\}
\]

(1.13)

and the degree of approximation \(L_n(f)\) of a function \(f \in L_v\) is given by

\[
E_n(f) = \min \|P_n - f\|_v
\]

(1.14)

A function \(f\) is said to satisfy Lipschitz condition (here after we write \(f \in \text{Lipa}\)) if

\[
|f(x + t) - f(x)| = O\left(|t|^\alpha \right), 0 < \alpha \leq 1
\]

(1.15)

and \(f(x) \in \text{Lip}(a, r), \) for \(0 \leq x \leq 2\pi,\) if

\[
\left(\int_0^{2\pi} |f(x + t) - f(x)|^r \, dx \right)^{1/r} = O\left(|t|^\alpha \right), 0 < \alpha \leq 1, \ r \geq 1, \ t > 0
\]

(1.16)
We use the following notation throughout this paper:

\[\psi(t) = \frac{1}{2} \{ f(x + t) - f(x - t) \} \tag{1.17} \]

and

\[\overline{K_n}(t) = \frac{1}{\pi (1 + q)^n} \sum_{k=0}^{n} \left(\frac{1}{k!} \sum_{l=0}^{k} p_l \right) \cos \left(\frac{t}{2} \cos \left(\frac{v + \frac{1}{2}}{2} \right) \right) \sin \left(\frac{t}{2} \right) \tag{1.18} \]

Further, the method \((E, q) (N, p_n)\) is assumed to be regular.

2. Known Theorem

Dealing with the degree of approximation by the product \((E, q) (C, 1)\) - mean of Fourier series, Nigam et al [3] proved the following theorem:

Theorem 2.1. If a function \(f\) is \(2\pi\)-periodic and belonging to class \(Lip_a\), then its degree of approximation by \((E, q) (C, 1)\) summability mean on its Fourier series \(\sum_{n=0}^{\infty} A_n(t)\) is given by

\[\| E_n^q C_n^1 - f \|_\infty = O\left(\frac{1}{(n+1)^\alpha} \right), 0 < \alpha < 1 \]

where \(E_n^q C_n^1\) represents the \((E, q)\) transform of \((C, 1)\) transform of \(s_n(f; x)\).

Recently, Misra et al [2] proved the following theorem using \((E, q)(N, p_n)\) mean of conjugate series of the Fourier series:

Theorem 2.2. If \(f\) be \(2\pi\)-Periodic function of class \(Lip_a\), then degree of approximation by the product \((E, q)(N, p_n)\) summability means of the conjugate series (1.10) of Fourier series (1.9) is given

\[\| \tau_n - f \|_\infty = O\left(\frac{1}{(n+1)^\alpha} \right), 0 < \alpha < 1 \]

where \(\tau_n\) is as defined in (1.7).

3. Main theorem

In this paper, we have proved a theorem on degree of approximation by the product mean \((E, q)(N, p)\) of conjugate series of Fourier series of a function of class \(Lip(a, r)\). We prove:

Theorem 3.1. If \(f\) be \(2\pi\)-Periodic function of class \(Lip_a\), then degree of approximation by the product \((E, q)(N, p_n)\) summability means of the conjugate series of Fourier series (1.10) is given

\[\| \tau_n - f \|_\infty = O\left(\frac{1}{(n+1)^{\alpha-1/r}} \right), 0 < \alpha < 1 \]

by

\[\| \tau_n - f \|_\infty = O\left(\frac{1}{(n+1)^{\alpha-1/r}} \right), 0 < \alpha < 1 \]

where \(\tau\) is as defined in (1.7).

4. Required Lemmas

We require the following Lemmas to prove the theorem.

Lemma 4.1

\[\left| \overline{K_n}(t) \right| = O(n), 0 \leq t \leq \frac{1}{n+1} \]
Proof.

For \(0 \leq t \leq \frac{1}{n+1}\) we have \(\sin nt \leq n\sin t\) then

\[
\left| K_n(t) \right| = \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^{k} p_{\nu} \frac{\cos \frac{t}{2} - \frac{\nu}{2} + \frac{1}{2} t}{\sin \frac{t}{2}} \right\} \right|
\]

\[
\leq \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^{k} p_{\nu} \left(\cos \frac{t}{2} \frac{2 \sin \frac{t}{2} \sin \frac{t}{2}}{\sin \frac{t}{2}} + \sin \nu t \right) \right\} \right|
\]

\[
\leq \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^{k} p_{\nu} \left(O(2 \sin \frac{t}{2} \sin \frac{t}{2} \sin \nu t) + \nu \sin t \right) \right\} \right|
\]

\[
= O(n)
\]

This proves the lemma.

Lemma 4.2

\[
\left| K_n(t) \right| = O\left(\frac{1}{t}\right), \text{ for } \frac{1}{n+1} \leq t \leq \pi
\]

Proof.

For \(\frac{1}{n+1} \leq t \leq \pi\), by Jordan’s lemma, we have \(\sin\left(\frac{t}{2}\right) \geq \frac{t}{\pi}\)

Then

\[
\left| K_n(t) \right| = \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^{k} p_{\nu} \frac{\cos \frac{t}{2} - \frac{\nu}{2} + \frac{1}{2} t}{\sin \frac{t}{2}} \right\} \right|
\]

\[
= \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^{k} p_{\nu} \left(\cos \frac{t}{2} \frac{2 \sin \frac{t}{2} \cos \frac{t}{2} + \sin \nu t \sin \frac{t}{2}}{\sin \frac{t}{2}} \right) \right\} \right|
\]
This proves the lemma.

5. Proof of theorem 3.1

Using Riemann–Lebesgue theorem, we have for the n-th partial sum $s_n(f; x)$ of the conjugate Fourier series (1.10) of $f(x)$, following Titchmarsh [4]

$$\overline{s_n}(f; x) - f(x) = \frac{2}{\pi} \int_0^\pi \psi(t) \overline{K_n} \ dt$$

the (N, pn) transform of $\overline{s_n}(f; x)$ using (1.2) is given by

$$t_n - f(x) = \frac{2}{\pi P_n} \int_0^\pi \psi(t) \sum_{k=0}^n \frac{\cos t}{2} \frac{\sin \left(\frac{n+1}{2} \right) t}{2 \sin \left(\frac{t}{2}\right)} dt$$

denoting the $(E, q)(N, pn)$ transform of $\overline{s_n}(f; x)$ by τ_n, we have

$$\|\tau_n - f\| = \frac{2}{\pi(1+q)^n} \int_0^\pi \psi(t) \sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array}\right) q^{n-k} \left(\frac{1}{P_k} \sum_{\nu=0}^k P_{\nu} \frac{\cos t}{2} \frac{\sin \left(\frac{\nu+1}{2} \right) t}{2 \sin \left(\frac{t}{2}\right)} \right) dt$$

$$= \int_0^\pi \psi(t) \overline{K_n}(t) dt$$

$$= \int_0^{\pi/2} \psi(t) \overline{K_n}(t) dt + \int_{\pi/2}^\pi \psi(t) \overline{K_n}(t) dt$$

$$= I_1 + I_2$$

(5.1)
Now

\[|I_1| = \frac{2}{\pi (1 + q)^r} \left| \int_0^{r+1} \psi(t) \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left(\frac{1}{p_k} \sum_{\nu=0}^{k} p_{\nu} \cos \left(\frac{t}{2} - \cos \left(\frac{\nu + \frac{1}{2}}{2} \right) \right) \right) dt \right| \]

\[\leq \int_0^{n+1} \psi(t) K_n(t) dt \]

\[= \left(\int_0^{n+1} (\psi(t))^r dt \right)^{\frac{1}{r}} \left(\int_0^{n+1} (K_n(t))^\frac{1}{r} dt \right)^{\frac{1}{r}}, \text{ using Holder’s inequality} \]

\[\leq O\left(\frac{1}{(n+1)^2} \right) \left(\int_0^{n+1} n^z dt \right)^{\frac{1}{s}}, \text{ using Lemma 4.1} \]

\[= O\left(\frac{n}{(n+1)^{s+1}} \right) = O\left(\frac{1}{(n+1)^{s-1}} \right) = O\left(\frac{1}{(n+1)^{\frac{1}{r}}} \right) \]

(5.2)

Next

\[|I_2| \leq \left(\int_{\frac{1}{n+1}}^{\frac{n+1}{n+1}} (\psi(t))^r dt \right)^{\frac{1}{r}} \left(\int_{\frac{1}{n+1}}^{\frac{n+1}{n+1}} (K_n(t))^\frac{1}{r} dt \right)^{\frac{1}{r}}, \text{ using Holder’s inequality} \]

\[\leq O\left(\frac{1}{(n+1)^2} \right) \left(\int_{\frac{1}{n+1}}^{\frac{n+1}{n+1}} \left(\frac{1}{t} \right)^s dt \right)^{\frac{1}{s}}, \text{ using Lemma 4.2} \]

\[= O\left(\frac{1}{(n+1)^{s-1}} \right) \frac{1}{n+1} \]

(5.3)
Then from (5.2) and (5.3), we have

\[|r_n - f(x)| = O \left(\frac{1}{(n+1)^{\frac{1}{r}} - \frac{1}{r}} \right), \text{ for } 0 < \alpha < 1, r \geq 1. \]

Hence,

\[\|r_n - f(x)\|_z = \sup_{-\pi < x < \pi} |r_n - f(x)| = O \left(\frac{1}{(n+1)^{\frac{1}{r}}} \right), 0 < \alpha < 1, r \geq 1 \]

This completes the proof of the theorem.

References

