This work is licensed under a
Creative Commons Attribution 4.0 International License
M. Frontini, E. Sormani, Modified Newtons method with third-order convergence and multiple roots, J. Comput. Appl. Math. 156(2003) 345-354.
H.H.H. Homeier, A modified Newton method for root finding with cubic convergence, J. Comput. Appl. Math. 157(2003) 227-230.
H.H.H. Homeier , On Newton-type methods with cubic convergence, J. Comput. Appl. Math. 176(2005) 425-432.
M. S. M. Bahgat, New Two-Step Iterative Methods for Solving Nonlinear Equations, J. Math. Research, 4, No. 3; June (2012) ISSN 1916-9795.
D. Kincaid, W. Cheney, Numerical Analysis, second ed., Brooks/Cole, Pacific Grove, CA, (1996).
P. Jain, Steffensen type methods for solving nonlinear equations, Applied Mathematics and Computation 194(2007) 527-533.
Q. Zheng, J. Wang, P. Zhao, L. Zhang, A Steffensen-like method and its higher-order variants, Applied Mathematics and Computation 214(2009)10-16.
M. Dehghan, M. Hajarian, Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations, Journal of Computational and Applied Mathematics 29(2010) 19- 30.
N. Yasmin, M. Junjua, Some Drivative Free Iterative Methods for Solving nonlinear Equations. Academic Research International, Vol. 2, No. 1, (2012), 75-82.
A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, Steffensen type methods for solving nonlinear equations J. of Comput and App Math 236 (2012) 3058-3064.
J. M. Ortega, W. G. Rheinboldt, Iterative solutions of nonlinear equations in several variables, Press, New York- London, (1970).
E. Halley, Anew exact and easy method for finding the roots of equations generally and without any previous reduction, Phil. Roy. Soc. London 8(1964) 136-147.
K. Jisheng,L. Yitian, W. Xiuhua, A composite fourth-order iterative method for solving, Applied Mathematics and Computation (2006), doi: 10. 1016/j. amc. 2006. 05. 181.
R. Ezzati and F. Saleki, On the Construction of New Iterative Methods with Fourth-Order Convergence by Combining Previous Methods. International Mathematical Forum, Vol. 6, 2011, no. 27, 1319 - 1326.
F. Soleymani , V. Hosseinabadi, New Third- and Sixth-Order Derivative-Free Techniques for Nonlinear Equations. Journal of Mathematics Research 3 (2011) ISSN 1916-9809 (Online).