This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] Coleman B. D, Noll W., 1960, An Approximation Theorem For Functionals With Applications In Continuum Mechanics, Arch. Rational Mech. Anal., Vol. 6, p.355.
DOI: https://doi.org/10.1007/bf00276168[2] Kaloni P. N., 1989, Some Remarks On Useful Theorems For Second-Order Fluids, J. Non-Newt. Fluid Mech., Vol. 31, p.115.
[3] Siddheshwar. P. G. and Srikrishna, C. V. (2002) Unsteady non-linear convection in a second order fluid, Int. J. Non-linear Mech., Vol. 37, p.321.
DOI: https://doi.org/10.1016/s0020-7462(00)00119-0[4] Siddeshwar. P. G, Sekhar G. N, Jayalatha G. (2010) , Effect of time period vertical oscillations of the Rayleigh- Bѐnard system on non-linear convection in viscoelastic liquids, J. Non Newtonian fluid Mech., Vol. 165, p.1412.
DOI: https://doi.org/10.1016/j.jnnfm.2010.07.008[5] Sekhar G. N , Jayalatha G. (2010), Elastic effect on Rayleigh Bѐnardin liquid in temperature dependent viscocity, Int. Journal of thermal sciences, Vol. 49, p.67.
[6] Lindsay K. A. and Straughan, B. (1978) Acceleration waves and second sound in a perfect fluid, Arch. Rational Mech. Anal. Vol. 68, 53.
DOI: https://doi.org/10.1007/bf00276179[7] Straughan B. and Franchi F. (1984) Benard convection and the Cattaneo law of heat conduction, Proc. of Roy. Soc. Of Edi. Vol. 96A, 175.
[8] Lebon G. and Cloot A. (1984) Benard-Marangoni instability in a Maxwell-Cattaneo fluid, Phy. Let. Vol 105 A, 361.
DOI: https://doi.org/10.1016/0375-9601(84)90281-0[9] Siddheshwar P. G. (1999) Rayleigh Benard convection in a second order Ferromagnetic fluid with second sound,. Proc. VIII Asian Cong., Fluid Mech. China, Dec. 6-10, 631.
[10] Siddheshwar P. G. and Pranesh S. (1998) Effects of a Non-Uniform Basic Temperature Gradient on Rayleigh-Bénard Convection in a Micropolar Fluid, International Journal of Engineering Science, Vol. 36, No. 11, September, p.1183.
DOI: https://doi.org/10.1016/s0020-7225(98)00015-9[11] Pranesh S. and Kiran R. V. (2010), Study of Rayleigh-Bѐnard Magneto convection in a micropolar fluid with Maxwell Cattaneo law, Applied Mathematics, Vol. 1, p.470.
DOI: https://doi.org/10.4236/am.2010.16062[1] I. Pérez-Reyes, R. Vargas-Aguilar, S. Pérez-Vega, A. Ortiz-Pérez, Polymer Rheology, 2018
DOI: https://doi.org/10.5772/intechopen.76122