This work is licensed under a
Creative Commons Attribution 4.0 International License
Lu Lu; Doering C.R.; Busse F.H. Bounds on convection driven by internal heating. J. Math. Phys., Vol. 45, No. 7, 2968-2985; July (2004).
Bobok Elemer; Navratil Laszlo; Muszaki Fizika 1: Aramlastan. Kezirat, Tankonyvkiado, Budapest (1990).
Eglit M. E. and al. Problemes de mecanique des milieux continus. Tomes 1, 2. Lycee Moscovite, (1996).
Busse, F. On Howard's upper bound for heat transport by turbulent convection. J. Fluid Mech. 37, 457-477 (1969).
Busse, F. The bounding theory of turbulence and its physical significance in the case of turbulent Couette flow. In: Statistical Models and Turbulence, edited by M. Rosenlatt and C. M. Van Atta, Springer Lecture Notes in Physics Vol. 12 (Springer, Berlin, 1972), pp.103-126.
Busse, F. The optimum theory of turbulence. Adv. Appl. Mech. 18, 77 -121, (1978).
Busse, F. On the optimum theory of turbulence, Energy Stability and convection, Pitman Research Notes in Mathematics, edited by G. Galdi and B. Straughan , Wiley, New York, (1987).
Zadrzynska E.; Zajaczkowski W.M. Global Regular Solutions with Large Swirl to the NavierStokes Equations in a cylinder. J. Math. Fluid Mechanics; Vol. 11, 126-169, (2009).
[1] T. Moschandreou, "A New Analytical Procedure to Solve Two Phase Flow in Tubes", Mathematical and Computational Applications, Vol. 23, p. 26, 2018
DOI: https://doi.org/10.3390/mca23020026