GENERALIZED REVERSE DERIVATIONS ON SEMIPRIME RINGS

Dr. C. Jaya Subba Reddy¹, G. Venkata Bhaskara Rao², S.Vasantha Kumar³

cjsreddysvu@gmail.com, gvbr0001@gmail.com, vasanthloyola1@gmail.com

¹,²,³Department of Mathematics, S. V. University, Tirupati – 517502, Andhra Pradesh, India.

KEYWORDS: Semiprime ring, Derivation, Reverse derivation, Generalized reverse derivation, Center.

ABSTRACT: In this paper we extend our ideas from reverse derivation towards the Generalized reverse derivations on semiprime rings. In this Paper, we prove that if \(d \) is a non-zero reverse derivation of a semi prime ring \(R \) and \(f \) is a generalized reverse derivation, then \(f \) is a strong commutativity preserving. Using this, we prove that \(R \) is commutative.

INTRODUCTION: Bell and Martindale [3] studied centralizing mappings of semiprime rings and proved that if \(d \) is a non-zero derivation of a prime ring \(R \) such that \([d(x),x]=0\), for all \(x \) in a non-zero left ideal of \(R \), then \(R \) is commutative. Bell and Daif [2] investigated commutativity in prime and semiprime rings admitting a derivation or an endomorphism which is strong commutativity preserving on a non-zero right ideal. Ali and Shah [1] extended some results of Bell and Martindale [3] for generalized derivations. Bresar [6] studied centralizing mappings and derivations in prime rings and proved that if \(U \) be a non-zero left ideal of a prime ring \(R \) and \(d \) and \(g \) are derivations of \(R \) satisfying \(d(u)u - ug(u) \in Z \), for all \(u \in U \) and \(d \neq 0 \) then \(R \) is commutative. Vukman [11] studied some properties of generalised derivations of semiprime rings. Bresar and Vukman [5] have studied the notion of reverse derivation and some properties of reverse derivations. M.Samman and N.Alyamani [9] have studied some properties of reverse derivations on semiprime rings and proved that a mapping \(d \) on a semiprime ring \(R \) is a reverse derivation if and only if, it is a central derivation. Also proved that if a prime ring \(R \) admits a non-zero reverse derivation, then \(R \) is commutative.

K.Suvarna and D.S.Irfana [10] have studied some properties of prime and semiprime rings with generalized derivations on a non-zero left ideal of \(R \).

PRELIMINARIES: An additive map \(d \) from a ring \(R \) to \(R \) is called a derivation if \(d(xy) = d(x)y + xd(y) \) for all \(x, y \) in \(R \). An additive map \(d \) from a ring \(R \) to \(R \) is called a reverse derivation if \(d(xy) = d(y)x + yd(x) \) for all \(x, y \) in \(R \). An additive mapping \(f: R \rightarrow R \) is said to be a right generalized derivation if there exists a derivation \(d: R \rightarrow R \) such that \(f(xy) = f(x)y + xd(y) \) for all \(x, y \) in \(R \). An additive mapping \(f: R \rightarrow R \) is said to be a left generalized derivation if there exists a derivation \(d: R \rightarrow R \) such that \(f(xy) = d(x)y + xf(y) \), for all \(x, y \) in \(R \). An additive mapping \(f: R \rightarrow R \) is said to be a generalized derivation if it is both right and left generalized derivation exists. We know that an additive mapping \(f: R \rightarrow R \) is a right generalized reverse derivation if there exists a derivation \(d: R \rightarrow R \) such that \(f(xy) = f(x)y + xd(y) \), for all \(x, y \) in \(R \) and \(f \) is a left generalized reverse derivation if there exists a derivation \(d: R \rightarrow R \) such that \(f(xy) = d(y)x + yf(x) \), for all \(x, y \) in \(R \). Finally, \(f \) is a generalized reverse derivation of \(R \) associated with \(d \) if it is both right and left generalized reverse derivation of \(R \). A mapping \(f: R \rightarrow R \) is called centralizing reverse derivation if \([xf(x)] \in Z\), for all \(x \) in \(R \). If \([x, f(x)] = 0\), for all \(x \) in \(R \), then \(f \) is called commuting reverse derivation. A mapping \(f: R \rightarrow R \) is called strong commutativity preserving if \([f(x), f(y)] = [x, y]\) for all \(x, y \) in \(R \). Throughout this paper, \(R \) will denote a semiprime ring and \(Z \) its center.

Remark 1: For a non-zero elementa \(a \in Z \), if \(ab \in Z \), then \(b \in Z \).

To prove the main results we require the following lemmas:

Lemma 1: If \(f \) is an additive mapping from \(R \) to \(R \) such that \(f \) is centralizing on a left ideal \(U \) of \(R \), then \(f(x) \in Z \), for all \(x \in U \cap Z \).
Proof: Since f is centralizing on U, we have $[f(x+y),x+y] \in Z$, for all $x, y \in U$. This implies that
\[[f(x),y]+[f(y),x] \in Z \quad (1) \]
Now if $x \in Z$, then from equation (1), we have,
\[[f(x),y] \in Z \]
We replace y by $f(x)y$, then
\[f(x)[f(x)y,y] \in Z \]
If $[f(x),y] = 0$, then $f(x) \in C_R(U)$, the centralizer of U in R and by [3] belongs to Z. But on the other hand, if $[f(x),y] \neq 0$, it again follows from the Remark 1 that $f(x) \in Z$. \hfill \blacksquare

Lemma 2: Let R be a semiprime ring and U a non-zero ideal of R. If Z in R centralizes the set $[U,U]$, then Z centralizes U.

Proof: Let Z centralizes $[U,U]$. Then for all x,y in U, we have,
\[z[x,y]=x[y,z], \text{ which can be rewritten as } z[x,y]=x[y,z]. \]
Hence $[z,x][y,z]=0$, for all x, y in U \quad (2)
If we replace y by yz, then we get,
\[[z,y]U=[z,x]=\{0\} \]
Since U is an ideal, it follows that,
\[[z,x]UR[z,x]=U[z,x]=\{0\} \]
Thus $[[x,y],x]=0$, for all x in U and by [4], z centralizes U. \hfill \blacksquare

Now we prove the following results:

Theorem 1: Let $d: R \rightarrow R$ be a non-zero derivation of a semiprime ring R and f be a Generalized reverse derivation on a non-zero left ideal U of R. If f acts as a homomorphism on U, then f is strong commutativity preserving on U.

Proof: We assume that f acts as a homomorphism on U and f be a generalized reverse derivation on U. Then,
\[f(xy) = f(x)f(y) = f(y)x + yd(x), \text{ for all } x, y \text{ in } U \quad (3) \]
We replace y by yz, $z \in U$, the second equality of equation (3), we have,
\[f(yz)=f(y)z+yd(x)=f(y)f(z)x+yd(x) \quad (4) \]
Since f is a homomorphism, on the other hand, we have,
\[f(x)f(yz) = f(x)f(y)f(z) = f(xy)f(z) = f((y)x+yd(x))f(z) = f(y)f((x+z)y)d(x)f(z) = f(y)(x+z)d(x)f(z) \quad (5) \]
From equations (4) and (5), we get,
\[yd(x)f(z)=yd(x)z \quad (6) \]
We replace z by $[x,y]$ in equation (6), we get,
\[yd(x)f([x,y])-y([x,y])=0 \]
\[=d(x)(f([x,y])-y([x,y]))=0 \]
By replacing y by $(f([x,y])-y([x,y])r)Rd(x), r \in R$, we get,
\[d(x)(f([x,y])-y([x,y]))Rd(x)(f([x,y])-y([x,y]))=0 \]
\[=d(x)(f([x,y])-y([x,y]))Rd(x)(f([x,y])-y([x,y]))=0 \]
Since R is semiprime, we have,
\[d(x)(f([x,y])-y([x,y]))=0 \]
\[=d(x)(f([x,y])-y([x,y]))=0 \]
Since $d \neq 0$, we have,
\[\Rightarrow (f([z,y])-[z,y])=0 \]
\[\Rightarrow f([z,y])=[z,y] \]
\[\Rightarrow [f(z),f(y)]=[z,y] \]
Hence f is a strong commutativity preserving on U.

Theorem 2: Let R be a semiprime ring and f be a Generalized reverse derivation on a non-zero left ideal U of R. If f acts as a homomorphism on U, then f is Commuting on U.

Proof: From the above Theorem 1, f is strong commutativity preserving. Then for all $x,y \in U$, we have,
\[\Rightarrow [x,y]=f([x,y]) \]
\[\Rightarrow [x,y]=f(x)f(y) \]
\[\Rightarrow [x,y]-[x,y]=0 \]
\[\Rightarrow [x,y]=0 \]

From $[x,y]=f([x,y])$ we can similarly show that $f([x]-x)[x,y]=0$, for all $x,y \in U$
We replace y by ry, then we get,
\[\Rightarrow [x,r]=f([x]-x)=0 \]
This implies that $[x,r]U(f(x)-x)\subseteq 0$ and so, $[x,r] RU(f(x)-x)= 0$

Since R is semiprime, it must contain a family $w = \{P_{\alpha} / \alpha \in \Lambda \}$ of prime ideals such that $\cap P_{\alpha} = 0$. If P is a member of w and $x \in U$, then from the last equation, we have, $U(f(x)-x) \subseteq P$ (or) $[x,R] \subseteq P$.
Suppose there exists $y \in U$ such that $[y,R] \not\subseteq P$. This implies that $U(f(y)-y) \subseteq P$.
Let z be any element of U such that $[y+z,R] \subseteq P$. This means that $[z,R] \not\subseteq P$ and hence $(f(z)-z) \subseteq P$. On the other hand if $[y+z,R] \subseteq P$, then $U(f(y+z)-(y+z)) \subseteq P$. This implies that $U(f(z)-z) \subseteq P$.
Thus we conclude that $U(f(z)-z) \subseteq P$ for all $z \in U$ and hence $[U,U](f(z)-z) \subseteq P$ for all $z \in U$.
Since P is arbitrary and $\cap P_{\alpha} = 0$, we have, $[U,U](f(z)-z) = \{0\}$, for all $z \in U$.
Similarly, we can show that $(f(z)-z)U \subseteq P$, for all $z \in U$.
This implies that $(f(z)-z) \in C_R[U,U]$, for all $z \in U$.
By Lemma 2 and by [7], we have $([x,x]-x) \in C_R(U)$, for all $x \in U$. Thus we have $[f(x)-x,x]=0$, for all $x \in U$.
This implies that $[f(x),x]=0$, for all $x \in U$.
Hence f is commuting on U.

Theorem 3: Let R be a semiprime ring and $d:R \rightarrow R$ be a non-zero derivation. If f is a Generalized reverse derivation on a left ideal U of R, then R is commutative.

Proof: Since f is commuting on U, by the above Theorem 2, then we have,
\[[f(x),x]=0 \quad \text{for all } x \in U \]
We replace x by $x+y$, in the above equation, then we get,
\[\Rightarrow [f(x),y]+[f(y),x]=0 \]
Now by substituting $y=xy$, then we get,
\[\Rightarrow [yv(x),x]=0 \]
We replace y by ry, then we get,
\[\Rightarrow [rx,v(x)]=0 \]
\[\Rightarrow [r,x]Ud(x)=0 \quad \text{for all } x \in U \text{ and } r \in R. \]
Since R is semiprime ring, it must contain a family $w = \{P_{\alpha} / \alpha \in \Lambda \}$ of prime ideals such that $\cap P_{\alpha} = 0$.
If P is a member of w and $x \in U$, then from the last equation $[R,x] \subseteq P$ or $d(x) \subseteq P$. Since d is non-zero on R, then by [8], d is non-zero on U. Suppose $d(x) \not\subseteq P$, for some $x \in U$, then $[R,x] \subseteq P$. Suppose $z \in U$ is such that $z \notin Z$, then $d(z) \subseteq P$ and $x + z \notin Z$. This implies $d(x + z) \subseteq P$ and so $d(x) \subseteq P$, is a contradiction to our assumption that $d(x) \not\subseteq P$. So, this implies $z \in Z$, for all $z \in U$.

Thus U is commutative and hence by [8], R is commutative.

Theorem 4: Let U be a left ideal of a semiprime ring R such that $U \cap Z \neq 0$. Let d be a non-zero derivation and f be a Generalized reverse derivation on R such that f is Centralizing on U. Then R is commutative.

Proof: We assume that $Z \neq 0$ because f is commuting on U, then there is nothing to prove.

Since f is centralizing on U, we have $[f(x),x] \in Z$, for all $x \in U$. If we replace x by $(x+y)$, then $[f(x+y),x+y] \in Z$, for all $x,y \in U$.

$$\Rightarrow [f(x),y] + [f(y),x] \in Z,$$ \hspace{1cm} (11)

We replace x by yz in equ.(11), then

$$\Rightarrow [f(z),y]y + z[d(y),y] + [f(y),y]z \in Z$$

Now, by Lemma 1, $f(z) \in Z$ and therefore, the above equation becomes,

$$\Rightarrow z[d(y),y] + [f(y),y]z \in Z$$

But f is centralizing on U, we have,

$$\Rightarrow [f(y),y]z \in Z \text{ and consequently } z[d(y),y] \in Z.$$

Since z is non-zero, it follows from the Remark 1 that $[d(y),y] \in Z$.

This implies that d is centralizing on U and hence by [3], we conclude that R is commutative.

References:

