This work is licensed under a
Creative Commons Attribution 4.0 International License
Jeremy Schiff. Self-Dual Yang Mills and the Hamiltonian Structures of Integrable Systems. arXiv: hep-th/9211070 (1992).
Keijiro Suzuki. Explorations of a self-dual Yang-Mills hierarchy. Diplomarbeit, Max Planck Institut fur Dynamik and Selbstorganisation (Oct. 2006).
A.R. Shehata & J. F Alzaidy. Canonical Reduction of the Self-Dual Yang-Mills Equations to Nonlinear Modified Korteweg-deVries Equations with Exact Solutions and its Conservation Laws. Int. Journal of Math. Analysis, Vol. 5, no. 3, 145-155 (2011).
Richard H. Enns & George C. McGuire. Nonlinear Physics with Mathematica for Scientists and Engineers. Berlin: Birkhäuser, 2001, pp.176-178.
Sadri Hassani. Mathematical Methods using Mathematica: For Students of Physics and Related Fields. New York: Springer-Verlag New York, Inc., (2003).
Eric Weisstein, http: /mathworld. wolfram. com/Korteweg-deVriesEquation. html.
Klaus Brauer. The Korteweg-deVries equation: History, exact solutions, and graphical representation (2000). URL: http: /www. usf. uni-osnabrueck. de/~kbrauer.
Miftachul Hadi & Hans J. Wospakrik. SU(2) Skyrme Model for Hadrons. Phys. J. IPS C8 (2004) 0514. URL: http: /hfi. fisika. net.
Mehri Sajjadian. Numerical solutions of Korteweg-deVries and Korteweg-deVries-Burger's equations using computer programming. arXiv: 1209. 1782 [math. NA] (2012).