Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BSMaSS > Volume 11 > Rotations in Minkowski Spacetime
< Back to Volume

Rotations in Minkowski Spacetime

Full Text PDF


With the relation of Olinde Rodrigues-Cartan is obtained an expression for the Lorentz matrix, and it is transformed to a better form for the Newman-Penrose formalism, thus it is possible to realize rotations of the null tetrad of NP.


The Bulletin of Society for Mathematical Services and Standards (Volume 11)
I. Guerrero-Moreno et al., "Rotations in Minkowski Spacetime", The Bulletin of Society for Mathematical Services and Standards, Vol. 11, pp. 23-25, 2014
Online since:
Sep 2014

A. Hernández G., R. López-Vázquez, J. Rivera R., J. López-Bonilla, Faraday tensor and Maxwell spinor, Journal de Ciencia e Ingeniería 6, No. 1 (2014).

B. Olinde Rodrigues, Des lois géométriques qui régissent les déplacements d'un systéme solide, Journal de Math. (Liouville) 5 (1840) 380-440.

E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. de France 41 (1913) 53-96.

Ju. Rumer, Spinorial analysis, Moscow (1936).

J. Aharoni, The special theory of relativity, Clarendon Press, Oxford (1959).

J. L. Synge, Relativity: the special theory, North-Holland, Amsterdam (1965).

J. López-Bonilla, J. Morales, G. Ovando, On the homogeneous Lorentz transformation, Bull. Allahabad Math. Soc. 17 (2002) 53-58.

M. Acevedo M., J. López-Bonilla, M. Sánchez M., Quaternions, Maxwell equations and Lorentz transformations, Apeiron 12, No. 4 (2005) 371-384.

E. Newman, R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3, No. 3 (1962) 566-578.

S. J. Campbell, J. Wainwright, Algebraic computing and the Newman-Penrose formalism in general relativity, Gen. Rel. Grav. 8, No. 12 (1977) 987-1001.

D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact solutions of Einstein's field equations, Cambridge University Press (1980).

R. K. Sachs, Gravitational waves in general relativity VI: The outgoing radiation condition, Proc. Roy. Soc. London A264 (1961) 309-337.

P. J. Greenberg, J. P. Knauer, Stud. Appl. Math. 53 (1974) 165.

M. Carmeli, Group theory and general relativity, McGraw-Hill, New York (1977).

R. Linares, J. López-Bonilla, J. Quino, Real tetrads and Lorentz transformations, Bol. Soc. Cub. Mat. Comp. 8, No. 2 (2010) 141-153.

P. J. Greenberg, The algebra of the Riemann curvature tensor in general relativity: Preliminaries, Stud. Appl. Math. 51 (1972) 277.

S. Chandrasekhar, An introduction to the theory of the Kerr metric and its perturbations, in General Relativity, Eds. S. W. Hawking, W. Israel, Cambridge University Press (1979) Chap. 7.

E. Cartan, Sur les espaces conformes généralisés et l'Univers optique, C. R. Acad. Sci. Paris 174 (1922) 857-859.

R. Debever, Le rayonnement gravitationnel: Le tenseur de Riemann en relativité générale, Cah. de Phys 168-169 (1964) 303.

R. Penrose, A spinor approach to general relativity, Ann. of Phys. 10 (1960) 171-201.

J. López-Bonilla, R. Meneses, M. Turgut, Faraday tensor: its algebraic structure, J. Vect. Rel. 4, No. 3(2009) 23-32.

Show More Hide