In this paper, we introduce the notion of compatible mappings of type (K) in intuitionistic fuzzy metric space and obtain a common fixed point theorem for self mappings on complete intuitionistic fuzzy metric space with example. Our result generalizes and improves other similar results in literature.

Periodical:

The Bulletin of Society for Mathematical Services and Standards (Volume 10)

Pages:

53-58

Citation:

K.B. Manandhar et al., "Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space Using Compatible Mappings of Type (K)", The Bulletin of Society for Mathematical Services and Standards, Vol. 10, pp. 53-58, 2014

Online since:

June 2014

Authors:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

George, P. Veeramani, On some results in fuzzy metric spaces Fuzzy Sets and Systems, 64 (1994), 395-399.

Schweizer, Sklar, A. Statistical metric spaces, Pacific J. of Math., 10 (1960) 314-334.

Alaca, Turkoglu. D, Yildiz. C, Fixed points in intuitionistic fuzzy metric Spaces, Chaos, Solitons and Fractals, 29(2006), 1073-1078.

G. Jungck and B. E. Rhoades, Fixed Point for Set Valued functions without Continuity, Indian J. Pure Appl. Math., 29(3), (1998), 771- 779.

G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(1986), pp.771-779.

G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japonica, 38(1993), 381-390.

H. K. Pathak, Y. J. Cho, S. S. Chang and S. M. Kang, Compatible mappings of type (P) and fixed point theorem in metric spaces and Probabilistic metric spaces, Novi Sad J. Math., Vol. 26(2)(1996), 87-109.

J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 2(2004), 1039-1046.

K. B. Manandhar, K. Jha and G. Porru. Common Fixed Point Theorem of Compatible Mappings of Type (K) in Fuzzy Metric Space, Electronic J. Math. Analysis and Appl, 2(2)(2014), 248-253.

K. B. Manandhar, K. Jha and H. K. Pathak, A Common Fixed Point Theorem for mpatible Mappings of Type (E) in Fuzzy Metric space, Appl Math. Sci, 8 (2014), 2007 - (2014).

K. Jha, V. Popa and K.B. Manandhar, A common fixed point theorem for compatible mapping of type (K) in metric space, Internat. J. of Math. Sci. & Engg. Appl. (IJMSEA), 8 (I) ( 2014), 383-391.

L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353.

M. Verma and R. S. Chandel, Common fixed point theorem for four mappings in intuitionistic fuzzy metric space using absorbing Maps, IJRRAS 10 (2) (2012), 286 - 291.

O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 326-334.

R. P. Pant, A common fixed point theorem under a new condition, Indian. J. Pure Appl. Math., 30 (2) (1999) 147-152.

S. Sharma., Kutukcu, and R.S. Rathore , Common fixed point for Multivalued mappings in intuitionistic fuzzy metricspace, Communication of Korean Mathematical Society, 22 (3), (2007), 391-399.

Y.J. Cho, H.K. Pathak, S.M. Kang, J.S. Jung, Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111.

Cited By:

This article has no citations.