DIO 3 – TUPLES FOR SPECIAL NUMBERS – I

M.A.Gopalan¹, V.Geetha², S.Vidhyalakshmi³*

¹,³. Professors, Department of Mathematics, Shrimathi Indira Gandhi College, Trichy,
². Assistant Professor, Department of Mathematics, Cauvery College for Women, Trichy.

Keywords: Dio 3 - tuples, Pell equation, Polygonal numbers and Centered polygonal numbers, Linear Polynomials and Jacobasthal-Lucas number.

Abstract. We search for three distinct polynomials with integer coefficients such that the product of any two members of the set added with their sum and increased by a non-zero integer (or polynomial with integer coefficients) is a perfect square.

Introduction:

The problem of constructing the set with property that the product of any two its distinct elements is one less than a square has a very long history and such sets were studied by Diophantus. A set of m positive integers \{a₁, a₂, ..., aₘ\} is called a Diophantine m-tuple if

\[a_i \cdot a_j + 1 \text{ is a perfect square} \quad (1) \]

a perfect square for all \(1 \leq i < j \leq m\). Many generalizations of this problem (1) were considered since antiquity, for example by adding a fixed integer n instead of 1, looking kth powers instead of squares or considering the powers over domains other than Z or Q. Many mathematicians consider the problem of the existence of Diophantine quadruples with the property D(n) for any arbitrary integer n and also for any linear polynomials in n. In this context one may refer [1-16]. The above results motivated us the following definition:

A set of three distinct polynomials with integer coefficient \((a₁, a₂, a₃)\) is said to be a special dio 3-tuple with property D(n) if \(a_i \cdot a_j + (a_i + a_j) + n\) is a perfect square for all \(1 \leq i < j \leq 3\).

In the above definition n may be a non-zero integer or polynomial with integer coefficients. In this communication we consider a few special dio 3 tuples of polygonal numbers from \(t_{11,n}\) to \(t_{15,n}\), centered polygonal numbers from \(c_{11,n}\) to \(c_{15,n}\), linear polynomials and jacobasthal-lucas number with their corresponding properties.

Notations:

\[t_{m,n} = n \left(1 + \frac{(n-1)(m-2)}{2} \right) \text{ \quad PolyGonal number of rank n with sides m} \]
\[c_{t_{m,n}} = \frac{mn(n+1)}{2} + 1 \text{ \quad Centered PolyGonal number of rank n with sides m} \]
\[j_n = 2^n + 1 \text{ \quad Jacobasthal-Lucas number of rank n} \]
Construction of Dio 3-tuples for Hendecagonal number:

Let \(a = 2t_{11,n} \), \(b = 2t_{11,n-2} \) be Hendecagonal number of rank \(n \) and \(n-2 \) respectively such that \(ab + (a + b) + (-18n^2 + 50n - 1) \) is a perfect square say \(\gamma^2 \)

Let \(c \) be any non zero integer such that

\[
ac + (a + c) + (-18n^2 + 50n - 1) = \alpha^2
\]

\[
b + (b + c) + (-18n^2 + 50n - 1) = \beta^2
\]

On solving equations (2) and (3), we get

\[
(b+1)\alpha^2 - (a+1)\beta^2 = (a-b) + (-18n^2 + 50n - 1)(b-a)
\]

Assume \(\alpha = x + (a+1)T \) and \(\beta = x + (b+1)T \) and it reduces to

\[
x^2 = (b+1)(a+1)T^2 + (-18n^2 + 50n - 2)
\]

The initial solution of equation (5) is given by

\[
T_0 = 1 \text{ and } x_0 = 9n^2 - 25n + 7
\]

Therefore, \(\alpha = 18n^2 - 32n + 8 \)

On substituting the values of \(\alpha \) and \(\beta \) in equation (2), we get

\[
c = 36n^2 - 100n + 65
\]

Therefore triple \((2t_{11,n}, 2t_{11,n-2}, 2t_{11,n-2} + 72n + 135) \) is Dio 3-tuple with property \(D(-18n^2 + 50n - 1) \)

For simplicity, we present below the Dio 3-tuple for polygonal numbers from \(t_{11,n} \) to \(t_{15,n} \) with suitable properties.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(D(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2t_{11,n})</td>
<td>(2t_{11,n-2})</td>
<td>(8t_{11,n} - 72n + 67)</td>
<td>(D(14))</td>
</tr>
<tr>
<td>(2t_{11,n-1})</td>
<td>(8t_{11,n-1} + 36n - 39)</td>
<td>(D(-9n^2 + 16n))</td>
<td></td>
</tr>
<tr>
<td>(t_{12,n-2})</td>
<td>(t_{12,n-1} + 2t_{12,n-2} + 12n - 39)</td>
<td>(t_{12,n} + t_{12,n-2} - 28n + 11)</td>
<td>(D(-20n^2 + 56n - 19))</td>
</tr>
<tr>
<td>(t_{12,n-1})</td>
<td>(2t_{12,n-1} - 6n - 4)</td>
<td>(D(10n^3 - 27n^2 + 22n - 5))</td>
<td></td>
</tr>
<tr>
<td>(2t_{13,n})</td>
<td>(8t_{13,n} + 88n - 169)</td>
<td>(2t_{13,n-1} + 62n - 63)</td>
<td>(D(-44n^2 + 124n + 2))</td>
</tr>
<tr>
<td>(t_{13,n-1})</td>
<td>(2t_{13,n-2} - 26n + 33)</td>
<td>(D(-33n^2 + 60n - 4))</td>
<td></td>
</tr>
<tr>
<td>(t_{14,n})</td>
<td>(t_{50,n} - 45(n-1))</td>
<td>(t_{14,n-1} - 10n + 13)</td>
<td>(D(28n^2 - 76n + 74))</td>
</tr>
<tr>
<td>(t_{14,n-1})</td>
<td>(2t_{14,n} + 2t_{14,n-1} - 4)</td>
<td>(D(-6n^2 + 11n - 2))</td>
<td></td>
</tr>
<tr>
<td>(2t_{15,n})</td>
<td>(2t_{15,n-2} + 78n + 67)</td>
<td>(2t_{15,n-2} + 104n - 197)</td>
<td>(D(-104n^2 + 296n - 10))</td>
</tr>
<tr>
<td>(2t_{15,n-1})</td>
<td>(8t_{14,n} + 4t_{14,n} - 56n - 37)</td>
<td>(D(-13n^2 + 24n + 12))</td>
<td></td>
</tr>
</tbody>
</table>
Construction of Dio 3-tuples for Centered Hendecagonal number:

Let \(a = 2ct_{11,n} \) and \(b = 2ct_{11,n-2} \) be Centered Hendecagonal number of rank \(n \) and \(n-2 \) respectively such that \(ab + (a+b) + 352n^2 - 352n - 10 \) is a perfect square say \(\gamma^2 \)

Let \(c \) be any non zero integer such that

\[
\begin{align*}
ac + (a+c) + 352n^2 - 352n - 10 &= \alpha^2 \\
bc + (b+c) + 352n^2 - 352n - 10 &= \beta^2
\end{align*}
\]

On solving equations (8) and (9), we get

\[
(b+1)\alpha^2 - (a+1)\beta^2 = (a-b) + (352n^2 - 352n - 10)(b-\alpha)
\]

Assume \(\alpha = x + (a+1)T \) and \(\beta = x + (b+1)T \), in (10) and it reduces to

\[
x^2 = (b+1)(a+1)T^2 + (352n^2 - 352n - 11)
\]

The initial solution of equation (11) is given by

\[
T_0 = 1 \text{ and } x_0 = 11n^2 - 11n + 8
\]

Therefore,

\[
\alpha = 22n^2 + 11
\]

On substituting the values of \(\alpha \) and \(a \) in equation (8), we get

\[
c = 44n^2 - 44n + 43
\]

Therefore triple \((2ct_{11,n}, 2ct_{11,n-2}, t_{90,n} - n + 43) \) is Dio 3-tuple with property \(D(352n^2 - 352n - 10) \)

For simplicity, we present below the Diophantine triples for polygonal numbers from \(c_{11,n} \) to \(c_{15,n} \) with suitable properties.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>D(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2ct_{11,n})</td>
<td>(2ct_{11,n-2})</td>
<td>(ct_{22,n-1} - 22n + 10)</td>
<td>(D(-10))</td>
</tr>
<tr>
<td>(2ct_{11,n-1})</td>
<td></td>
<td>(ct_{88,n} - 44n)</td>
<td>(D(11n^2 - 4))</td>
</tr>
<tr>
<td>(ct_{12,n})</td>
<td>(ct_{12,n-2})</td>
<td>(2ct_{24,n} - 4)</td>
<td>(D(96n^2 - 96n - 11))</td>
</tr>
<tr>
<td></td>
<td>(6ct_{8,n} - 48n + 1)</td>
<td></td>
<td>(D(-11))</td>
</tr>
<tr>
<td></td>
<td>(ct_{12,n-1})</td>
<td>(4ct_{12,n} - 24n - 1)</td>
<td>(D(12n^2 - 3))</td>
</tr>
<tr>
<td>(2ct_{13,n})</td>
<td>(2ct_{13,n-2})</td>
<td>(8ct_{13,n-1} + 43)</td>
<td>(D(520n^2 - 520n + 2))</td>
</tr>
<tr>
<td></td>
<td>(8ct_{13,n} - 104n + 3)</td>
<td></td>
<td>(D(14))</td>
</tr>
<tr>
<td></td>
<td>(2ct_{13,n-1})</td>
<td>(2ct_{13,n-2} + 39n - 29)</td>
<td>(D(13n^2 + 1))</td>
</tr>
<tr>
<td>(ct_{14,n})</td>
<td>(ct_{14,n-2})</td>
<td>(ct_{14,2n-1} - 14n + 26)</td>
<td>(D(140n^2 - 140n - 6))</td>
</tr>
<tr>
<td></td>
<td>(7ct_{8,n})</td>
<td></td>
<td>(D(6))</td>
</tr>
</tbody>
</table>
Construction of Dio 3 - tuples for Linear Polynomials

Case.1:
Let \(a = r - 1, b = r - 2\) be two linear polynomials such that \(ab + a + b + (k^2 + 1 + (2k + 1)r)\) is a perfect square say \(\gamma^2\).

Let \(c\) be any non zero integer such that
\[
\begin{align*}
ac + a + c + (k^2 + 1 + (2k + 1)r) &= \alpha^2 \\
bc + b + c + (k^2 + 1 + (2k + 1)r) &= \beta^2
\end{align*}
\]

On solving equation, (14) and (15), we get
\[
(b + 1)\alpha^2 - (a + 1)\beta^2 = (a - b) + (k^2 + 1 + (2k + 1)r)(b - a)
\]

Assuming \(\alpha = x + (a + 1)T\) and \(\beta = x + (b + 1)T\) in (16), it reduces to
\[
x^2 = (b + 1)(a + 1)T^2 + (k^2 + 1 + (2k + 1)r) - 1
\]

The initial solution of equation (17) is given by
\[
T_o = 1 \quad \text{and} \quad x_0 = r + k
\]

Therefore, \(\alpha = 2r + k\)

On substuting the values of \(\alpha\) and \(a\) in equation (14), we get
\[
c = 4r + 2k - 2
\]

Therefore, triple \((r - 1, r - 2, 4r + 2k - 2)\) is Dio 3-tuple with property
\[
D\left(k^2 + 1 + (2k + 1)r\right)
\]

Case.2:
Let \(a = r + 1, b = r + 2\) be two linear polynomials such that \(ab + a + b + r + 4\) is a perfect square say \(\gamma^2\).

Let \(c\) be any non zero integer such that
\[
\begin{align*}
ac + a + c + r + 4 &= \alpha^2 \\
bc + b + c + r + 4 &= \beta^2
\end{align*}
\]

On solving equation, (20) and (21), we get
\[
(b + 1)\alpha^2 - (a + 1)\beta^2 = (a - b) + (r + 4)(b - a)
\]

Assuming \(\alpha = x + (a + 1)T\) and \(\beta = x + (b + 1)T\) in (22), it reduces to
\[
x^2 = (b + 1)(a + 1)T^2 + (r + 4) - 1
\]

The initial solution of equation (17) is given by
\[
T_o = 1 \quad \text{and} \quad x_0 = r + 3
\]
Therefore, \(\alpha = 2r + 5 \)

On substituting the values of \(\alpha \) and \(a \) in equation (20), we get
\[c = 4r + 10 \]

Therefore, triple \((r + 1, r + 2, 4r + 10) \) is \(D(1) \)-tuple with property \(D(r + 4) \)

Construction of \(D(3) \)-tuples for Jacobsthal-Lucas number:

Let \(a = j_{2n}, b = j_{2n+2} \) be Jacobsthal-Lucas numbers of rank \(2n \) and \(2n+2 \) respectively, such that \(ab + a + b + 2.2^{2n} + 6 \) is a perfect square say \(\gamma^2 \).

Let \(c \) be any non zero integer such that
\[ac + a + c + 2.2^{2n} + 6 = \alpha^2 \]
\[bc + b + c + 2.2^{2n} + 6 = \beta^2 \]

On solving equation, (26) and (27), we get
\[(b+1)\alpha^2 - (a+1)\beta^2 = (a-b) + 2.2^{2n} + 6(b-a) \]

Assuming \(\alpha = x + (a+1) T \) and \(\beta = x + (b+1) T \) in (28), it reduces to
\[x^2 = (b+1)(a+1) T^2 + 2.2^{2n} + 5 \]

The initial solution of equation (29) is given by
\[T_0 = 1 \text{ and } x_0 = 2.2^{2n} + 3 \]

Therefore,
\[\alpha = 3.2^{2n} + 5 \]

On substituting the values of \(\alpha \) and \(a \) in equation (26), we get
\[c = 9.2^{2n} + 9 \]

Therefore, triple \((j_{2n}, j_{2n+2}, 9j_{2n}) \) is \(D(3) \)-tuple with property \(D(2.2^{2n} + 6) \)

In general, it is noted that the triple \((j_{2n}, j_{2n+2}, 92^{2n} + 2k + 1) \) is a \(D(3) \)-tuple with property
\[D\left(4k - 14 \right) 2^{2n} + k^2 - 2k - 2 \]

Conclusion:

In this paper we have presented a few examples of constructing a special \(D(3) \) tuples for Polygonal numbers, Centered polygonal numbers, linear polynomials and Jacobsthal-lucas numbers with suitable properties. To conclude one may search for \(D(3) \)-tuples for higher order polygonal numbers and centered polygonal numbers with their corresponding suitable properties.

The financial support from the UGC, New Delhi (F.MRP-5123/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged.
References:

[7]. Y. Fujita (2008), The extensibility of Diophantine pairs \(\left\{ k-1, k+1 \right\} \), J. Number theory, 128, 322-353.

[8]. Y. Fujita, A. Togbe (2011), Uniqueness of the extension of the \(D(4k^2) \)-triple \(\left\{ k^2 - 4, k^2, 4k^2 - 4 \right\} \), Notes Number Theory Discrete Math. 17, 42-49.

[9]. M.A. Gopalan and V. Pandichelvi (June 2009), On the extensibility of the Diophantine triple involving Jacobsthal numbers \(\left(j_{2n-1}, j_{2n+1} - 3, 2j_{2n} + j_{2n-1} + j_{2n+1} - 3 \right) \), International Journal of Mathematics & Application, 2 (1), 1-3.

