This work is licensed under a
Creative Commons Attribution 4.0 International License
Ashida F. and Sakata S., Tauchert T.R. and Yamashita Y., (2002). Inverse transient thermoelastic problem for a composite circular disc, Journal of thermal stresses, Vol. 25(431-435).
Deshmukh K. C. and Wankhede P.C. (1998). An Inverse transient problem of quasi-static thermal deflection of a thin clamped circular plate, Bulletin of pure and Applied Sciences, Vol. 17 E.
Grysa and Kozlowski (1982). One-dimensional problem of temperature and heat flux determination at the surface of a thermo elastic slab part -I, the Analytical Solutions, NUCL. Engrg. 74; pp.1-14.
Gaikwad P. B. and Ghadle K. P., (2012). Study of an Exact Solution of Unsteady-State Thermoelastic Problem of a Circular Plate, Americal. Jr. of Mathematics and Sciences. Vol. 1. No. 1. pp.175-183.
Kulkarni V. S. and Deshmukh, K. C., (2007), Quasi-static thermal stresses in a thick circular plate, Science Direct, applied Mathematics Modeling. Vol. 31, pp.1479-1488.
Noda, N., (1989), An inverse problem of coupled thermal stress fields in a circular cylinder, JSME, International Journal, Ser.A. 32, pp.791-797.
Roy Chaudhari S. K., (1982).
Sneddon I. N., (1972): The Use of Integral Transform McGraw Hill, New York, pp.235-238.
Ozisik, N. M. (1968): Boundary value problem of heat conduction tables for the roots of transcendental equation; pp.481-492.
[1] I. Kaur, P. Lata, "Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source", International Journal of Mechanical and Materials Engineering, Vol. 14, 2019
DOI: https://doi.org/10.1186/s40712-019-0107-4[2] P. Lata, I. Kaur, K. Singh, "Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources", Arab Journal of Basic and Applied Sciences, Vol. 27, p. 259, 2020
DOI: https://doi.org/10.1080/25765299.2020.1781328