This work is licensed under a
Creative Commons Attribution 4.0 International License
S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz and D. F. Nixon (2000). Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS , 14, 2313-2322.
S. M. Ciupe, B. L. Bivort, D. Bortz, Nelson. P (2006), Estimates of kinetic parameters from HIV patient data during primary infection through the eyes of three different models, Math Biosci 200: 1-27.
R. V. Culshaw, S. Ruan, (2000). A delay-dierential equation model of HIV infection of CD4+T-cells. Math Biosci 165: 27-39.
B. EL Boukari, K. Hattaf, N. Yousfi, (2013). Modeling the Therapy of HIV Infection with CTL Response and Cure Rate . Int. J. Ecol. Econ. Stat 28: 1-17.
I. S. Gradshteyn, I. M. Ryzhik, (2000). Routh-Hurwitz Theorem, in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 1076.
J. Hale and S. M. Verduyn Lunel, (1993) Introduction to Functional Differential Equations, Springer- Verlag, New York.
K. Hattaf and N. Yousfi, (2011). Dynamics of HIV Infection Model with Therapy and Cure Rate, International Journal of tomography and Statistics, 74-80.
P. Nelson, A. Perelson, (2002). Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences 179 73-94.
M. A. Nowak, C. R. M. Bangham, (1996). Population dynamics of Immune Responses to Persitent Viruses, Science, 272, 74-79.
A. S. Perelson, D. E. Kirschner, and R. D. Boer, (1993). Dynamics of HIV infection of CD4+ T-cells Math Biosci 114: 81-125.
A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, (1996). HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 , 1582-1586.
A. Perelson, P. Nelson, (1999). Mathematical Analysis of HIV dynamics in vivo, SIAM Rev., 41 3-44.
P. K. Srivastava, M. Banerjee, P. Chandra, (2010). A primary infection model for HIV and immune response with two discrete time delays, Diff. Equ. Dyn. Syst, 18(4): 385-399.
L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200 (2006), 44-57.
N. Yousfi, K. Hattaf and A. Tridane, (2011). Modeling the adaptative immune response in HBV infection, J. Math. Bio., 63(5): 933-957.
H. Zhu and X. Zou, (2008). Impact of delays in cell infection and virus production on HIV1 dy- namics. Mathematical Medicine and Biology, 25, 99-112.
H. Zhu and X. Zou, (2009). Dynamics of a HIV-1 Infection Model With Cell-Mediated Immune Response And Intracellular Delay, Discrete And Continuous Dynamical Systems Series B, Vol. 12, N o2, 511-524.
[1] N. Ali, G. Zaman, . Abdullah, A. Alqahtani, A. Alshomrani, "The Effects of Time Lag and Cure Rate on the Global Dynamics of HIV-1 Model", BioMed Research International, Vol. 2017, p. 1, 2017
DOI: https://doi.org/10.1155/2017/8094947[2] N. Akbari, R. Asheghi, M. Nasirian, "Stability and Dynamic of HIV-1 Mathematical Model with Logistic Target Cell Growth, Treatment Rate, Cure Rate and Cell-to-cell Spread", Taiwanese Journal of Mathematics, Vol. 26, 2022
DOI: https://doi.org/10.11650/tjm/211102