The goal of this contribution is to relate quarks to knots or loops in a 6-space *CP*^{3} that then collapses into a torus in real 3-space *P*^{3} instantaneously after the Big Bang, and massive inflation, when 3 quarks unite to form nucleons.

Periodical:

Bulletin of Mathematical Sciences and Applications (Volume 9)

Pages:

45-48

Citation:

J.A. de Wet, "Particle Knots in Toric Modular Space", Bulletin of Mathematical Sciences and Applications, Vol. 9, pp. 45-48, 2014

Online since:

August 2014

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

C.C. Adams, The Knot Book, Freeman, (1994).

J.S. Arvin, Knots on a Torus: A Model of Elementary Particles, symmetry, 4(2013)39- 115.

W. Barth and I. Nieto, Abelian Surfaces of Type (1, 3) and Quartic Surfaces, J. Algebraic Geometry 3(1994)173-222. 4.

Benjamin Brau, Determining the Muon Mass in an Instructional Laboratory, Am.J. Phys. 73(2010)64-70; arXiv: 0907. 5641.

H.S.M. Coxeter, The Polytope 221 whose 27 Vertices Correspond to the Lines on the General Cubic Surface, Am. Mathematical Soc. 62(1940)467486.

H.S.M. Coxeter, Regular Complex Polytopes, Camb. Univ. Press, Second Edition(1991).

M.B. Green J.H. Schwarz and E. Witten, Superstring Theory , Camb. Univ. Press (1998).

David Griffiths, Introduction to Elementary Particles, WILEY- VCH(2004).

H. Kedia, I. Bialynicki, D. Peralta-Salas and William Irvine, Tying Knots in Light Fields, arXiv: 1302. 0342.

Bruce Hunt, The Geometry of Some Arithmetic Quotients, Lecture Notes in mathematics, 1637, Springer(1996).

Lei-Yang, Hessian Polyhedra Invariant Theory and Appell Hypergeometric Partial Diifferential Equations, arXiv: math/0412065v2.

http: /members. home. nl/fg. marcelis/ellip-cayley. html.

Kunio Murasugi, Knot Theory and its Applications, Birkhauser, Boston(1996).

Carlo Rovelli, Loop Quantum Gravity, arXiv: gr-qc/971008.

R. Slansky, Group Theory for Unified Model Building, Reprinted in Unity of Forces in the Universe, Ed.A. Lee, World Scientific(1997).

Westy, Platonic Tesselations of Riemann Surfaces, http: /westy31. xs4all. nl/Geometry/Geometry. html.

Cited By:

This article has no citations.