The purpose of this paper is to construct the asymptotic for natural frequencies of the Schrödinger equation using the method of Wentzel-Kramers-Brillouin (WKB).

Periodical:

Bulletin of Mathematical Sciences and Applications (Volume 6)

Pages:

6-9

DOI:

10.18052/www.scipress.com/BMSA.6.6

Citation:

A.M. Marin et al., "Schrödinger Equation via WKB", Bulletin of Mathematical Sciences and Applications, Vol. 6, pp. 6-9, 2013

Online since:

Nov 2013

Authors:

Keywords:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

L. P. Akulenko and S. V. Nesterov, High-precision Methods in Eingenvalue Problems and Their Applications, Chapman Hall, (2005).

M. V. Fedoryuk, Asymptotic Analysis. Linear Ordinary Differential Equations, Springer, (1993).

R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers. Thomson-Brooks/Cole, (2003).

A. N. Tijonov and A. A. Samarsky, Ecuaciones de la Fisica Matemática, Editorial Mir-Moscu, (1972).

P. Zhevandrov and A. Merzon, Asymptotics of eigenfunctions in shallow potential wells and related problems. Amer. Math. Soc. Transl. Ser 2. 208(53) (2003), 235-284.