We give a proof of the solvability in a natural numbers for Fermat’s Last theorem and the equations a^{x}+b^{y}=c^{z }and X^{n1}_{1} + X^{n2}_{2} + ... + X^{nk-1}_{k-1} = X^{nk}_{k }has not been found earlier, significantly different from known, and allow us to obtain infinite set of solutions in natural numbers, and examples.

Periodical:

Bulletin of Mathematical Sciences and Applications (Volume 5)

Pages:

5-11

Citation:

K. R. R. Gandhi and R. Tint, "The Reproductive Solution for Fermat’s Last Theorem (Elementary Aspect)", Bulletin of Mathematical Sciences and Applications, Vol. 5, pp. 5-11, 2013

Online since:

August 2013

Authors:

Distribution:

Open Access

This work is licensed under a

Creative Commons Attribution 4.0 International License

References:

H. Davenport, The Higher Arithmetic, Moscow, (1965).

V. Sierpiński, 250 Problems in Elementary Number Theory, Moscow, (1968).

U. Davidov, Problems and exercises in theoretical arithmetic of whole numbers , Minsk, (1963).

A. Kurosh, Higher Algebra", " Science, Fizmatgiz, Moscow, (1971).

Н.Н. Воробьев, Признаки делимости", " Science, Fizmatgiz, Moscow, (1974).

V. Sierpiński, О решении уравнений в целых числах, , Fizmatgiz, Moscow, (1961).

Cited By:

This article has no citations.