Existence and uniqueness of fuzzy control integro-differential equation with perturbed

Phuong-N, Phung-N-N and Vu-H

Faculty of Basic Sciences, University of Banking HCMC, Viet Nam

Keywords: Fuzzy control integro differential equation, fuzzy integro differential equation, fuzzy differential equation, successive approximations.

Abstract: In the paper, we discuss the existence and uniqueness solution of fuzzy control integro differential equation with perturbed. The method of successive approximations is utilized to establish these results.

1. Introduction

The fuzzy set theory introduced by Zadeh has emerged as an interesting and fascinating branch of pure and applied sciences. The applications of fuzzy set theory can be found in many branches of regional, physical, mathematical, differential equations and engineering sciences. Recently, the authors have made important research results in the theory of fuzzy differential equations, integro-differential equations, fuzzy integro-differential equations, …

The fuzzy integro-differential equation in parametric form is converted to its related crisp form and the variational iteration method is used to approximate the solution of crisp integro-differential equation. Convergence of the obtained solution to exact solution is considered (see [3]). T. Allahviranloo et al considered the existence and uniqueness of solutions of fuzzy Volterra integro-differential equations of the second kind with fuzzy kernel under strongly generalized differentiability. The authors studied fuzzy set control differential equations (FSCDE) and the problem of stability and controllability of FSCDE (see [5]). In [6], the authors consider the existence of solutions of perturbed fuzzy integro differential equations

\[\begin{align*}
 x'(t) &= f(t, x(t)) + \int_{s_0}^{t} h(t, s, x(s))ds + g(t, x(t)) \int_{s_0}^{t} k(t, s, x(s))ds \\
 x(t_0) &= x_0
\end{align*} \]

In this paper, we consider the existence and uniqueness of fuzzy control integro-differential equation with perturbed of the form

\[\begin{align*}
 x'(t) &= f(t, x(t), u(t)) + \int_{s_0}^{t} h(t, s, x(s), u(s))ds + g(t, x(t)) \int_{s_0}^{t} k(t, s, x(s), u(s))ds, u(t) \\
 x(t_0) &= x_0
\end{align*} \]

where \(u(t) \) is admissible control and some suitable conditions

2. Preliminaries

We recall some notations and concepts presented in detail in recent series works of Prof. V.Lakshmikantham et al …(see [1,2]). Let \(K_C(\mathbb{R}^n) \) denote the collection of all nonempty, compact and convex subsets of \(\mathbb{R}^n \). Given \(A, B \) in \(K_C(\mathbb{R}^n) \), the Hausdorff distance between \(A \) and \(B \) defined as

\[d_H[A, B] = \max \{ \sup_{a \in A} \inf_{b \in B} \| a - b \|_{\mathbb{R}^n} , \sup_{b \in B} \inf_{a \in A} \| a - b \|_{\mathbb{R}^n} \} \]

where \(\| \cdot \|_{\mathbb{R}^n} \) denotes the Euclidean norm in \(\mathbb{R}^n \). It is known that \(K_C(\mathbb{R}^n),d_H \) is a complete metric space and if the space \(K_C(\mathbb{R}^n) \) is equipped with the natural algebraic operations of addition and nonegative scalar multiplication, then \(K_C(\mathbb{R}^n) \) becomes a semilinear metric space which can be embedded as a complete cone into a corresponding Banach space.

The set \([\omega]^{\alpha} = \{ z \in \mathbb{R}^n : \omega(z) \geq \alpha, 0 \leq \alpha \leq 1 \} \) is called the \(\alpha \)-level set. For all \(0 \leq \alpha \leq \beta \leq 1 \) then we have \([\omega]^{\beta} \subset [\omega]^{\alpha} \subset \text{left}[\omega^0] \). Set \(\mathcal{E}^n = \{ \omega : \mathbb{R}^n \rightarrow [0,1] \} \) such that \(\omega(z) \) satisfies (i)-(iv) stated below.
The element $\omega \in E^n$ is called a fuzzy number or fuzzy set. For two fuzzy sets $\omega_1, \omega_2 \in E^n$, we denote $\omega_1 \leq \omega_2$ if and only if $[\omega_1]^\alpha \subset [\omega_2]^\alpha$. Let us denote $\theta \in E^n$ the zero element of E^n as follows:

$$
\theta(z) = \begin{cases}
1 & \text{if } z = \hat{0} \\
0 & \text{if } z \neq \hat{0}
\end{cases}
$$

where $\hat{0}$ is the zero element of R^n. Let $u, v \in E^n$. The set $w \in E^n$ satisfying $u = u + w$ is known as the geometric difference of the set u and v and is denoted by the symbol $u - v$. The mapping $F: R_+ \supset I = [T_0, T] \to E^n$ is said to have a Hukuhara derivative $x'(\tau)$ at a point $\tau \in I$, if

$$
\lim_{x \to 0^+} \frac{h^{-1}(x(\tau + h) - x(\tau))}{h} \quad \text{and} \quad \lim_{x \to 0^+} \frac{h^{-1}(x(\tau) - x(\tau - h))}{h}
$$

exist and equal to $D_H x(\tau)$. Here limits are taken in the metric space (E^n, D_0). If $x: I \to E^n$ is continuous, then it is integrable and

$$
\int_{t_0}^{t_2} x(s)ds = \int_{t_0}^{t_1} x(s)ds + \int_{t_1}^{t_2} x(s)ds
$$

(2.1)

If $F,G : I \to E^n$ are integrable, $\lambda \in R$, then some properties below hold

$$
\int_{t_0}^{t} (x(s) + y(s))ds = \int_{t_0}^{t} x(s)ds + \int_{t_0}^{t} y(s)ds
$$

(2.2)

$$
\int_{t_0}^{t} \lambda x(s)ds = \lambda \int_{t_0}^{t} x(s)ds, \lambda \in R, t_0 \leq t \leq T.
$$

(2.3)

$$
D_0 \left[\int_{t_0}^{t} x(s)ds, \int_{t_0}^{t} y(s)ds \right] \leq \int_{t_0}^{t} D_0[x(s), y(s)]ds
$$

(2.4)
3. Main Results

In the section, we consider the existence and uniqueness of fuzzy control integro-differential equation with perturbed of the form

\[
\begin{aligned}
\dot{x}(t) &= f(t, x(t), u(t)) + \int_0^t h(t, s, x(s), u(s)) \, ds + g(t, x(t), \int_0^t k(t, s, x(s), u(s)) \, ds, u(t)) \\
x(t_0) &= x_0
\end{aligned}
\]

(3.1)

where \(f: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \), \(h: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \), \(g: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) are levelwise continous; the control \(u(t) \in \mathbb{R}^p \). If \(u: \mathbb{T} \to \mathbb{R}^p \) is integrable, the it is called an admissible control and the interval \(T = \{ t: |t-t_0| \leq \sigma \leq s \leq a \} \) with \(a>0 \). Let \(U \) be a set of all admissible controls. The mapping \((t) \in \mathbb{C}[T, \mathbb{R}^n] \) is said to be a solution of E.q (1.1) on \(T \). The solution of E.q (1.1) is written in the form

\[
\begin{aligned}
x(t) &= x_0 + \int_0^t f(s, x(s), u(s)) \, ds + \int_0^t \int_0^s h(s, \tau, x(\tau), u(\tau)) \, d\tau \, ds \\
&\quad + \int_0^t g(s, x(s), u(s), \int_0^s k(s, \tau, x(\tau), u(\tau)) \, d\tau) \, ds \\
x(t_0) &= x_0
\end{aligned}
\]

(3.2)

We denote \(Q = \mathbb{T} \times B(x_0, b_1) \times B(u_0, b_2) \), \(Q_0 = \mathbb{T} \times B(x_0, b_1) \times B(u_0, b_2) \) and \(Q_1 = \mathbb{T} \times \mathbb{T} \times B(x_0, b_1) \times B(u_0, b_2) \) where \(b_1, b_2>0, x_0 \in \mathbb{R}^n, u_0 \in \mathbb{R}^p \), \(B(x_0, b_1) = \{ x(t) \in \mathbb{R}^n: D[x, x_0] \leq b_1 \}, B(u_0, b_2) = \{ u(t) \in \mathbb{R}^p: D[u, u_0] \leq b_2 \} \). Assume that \(x, y: \mathbb{T} \to \mathbb{R}^n \) satisfy the following hypotheses:

(A1) For every \(u(t) \in U \) then admissible control \(u(t) \) satisfies: \(\int_{t_0}^t D_0[u(s), \theta] \, ds < B \), with \(B \) is fixed real number.

(A2) \(f: Q \to \mathbb{R}^n \) is levelwise continous and for any \((t, x, u), (t, y, v) \in Q \), we have

\[
D_0[f(t, x, u), f(t, y, v)] \leq L_f[D_0(x, y) + D_0(u, v)]
\]

where \(L_f \) is a given constant.

(A3) \(g: Q_0 \to \mathbb{R}^n \) is levelwise continous and for any \((t, x_1, y_1, u), (t, x_2, y_2, v) \in Q \), we have

\[
D_0[g(t, x_1, y_1, u), g(t, x_2, y_2, v)] \leq L_g[D_0[x_1, y_1] + D_0[x_2, y_2] + D_0[u, v]]
\]

where \(L_g \) is a given constant.

(A4) \(h, k: Q_1 \to \mathbb{R}^n \) is levelwise continous and for any \((t, x, u), (t, s, x, v) \in Q \), we have

\[
D_0[h(t, s, x, u), \theta] \leq L_h[D_0[x, \theta] + D_0[u, \theta]]
\]

where \(L_h, L_k \) is a given constant.

Theorem. If the conditions (A0)-(A3) holds then there exists a unique solution \(x(t) \) of (3.1) defined \(|t-t_0| \leq \sigma \). Moreover, there exists \(x(t): \mathbb{T} \to \mathbb{R}^n \) such that \(D(x_n(t), x(t)) \to 0 \) on \(|t-t_0| \leq \delta \) as \(n \to \infty \).

Proof. Let us define a sequence \(x_n(t) \) in \(\mathbb{R}^n, n=0,1,2, \ldots \) of successive approximations as follows
\[
\begin{align*}
\begin{cases}
 x_n(t) = x_0 + \int_{t_0}^t f(s, x_{n-1}(s), u(s))ds + \int_{t_0}^t \int_{t_0}^s h(s, \tau, x_{n-1}(\tau), u(\tau))d\tau ds \\
 + \int_{t_0}^t g\left(s, x_{n-1}(s), \int_{t_0}^s k(s, \tau, x_{n-1}(\tau), u(\tau))d\tau, u(s)\right)ds \\
 x(t_0) = x_0
\end{cases}
\end{align*}
\]

(3.3)

For \(n = 1, t \in T \) we have
\[
x_1(t) = x_0 + \int_{t_0}^t f(s, x_0(s), u(s))ds + \int_{t_0}^t \int_{t_0}^s h(s, \tau, x_0(\tau), u(\tau))d\tau ds
\]
\[
+ \int_{t_0}^t g(s, x_0(s), \int_{t_0}^s k(s, \tau, x_0(\tau), u(\tau))d\tau, u(s))ds
\]

which proves that \(x(t) \) is levelwise continuous on \(|t - t_0| \leq a \) and hence \(|t - t_0| \leq \sigma \). Moreover, we observe that
\[
\int_{t_0}^t D_0\left[f(s, x_0(s), u(s)), \theta \right] d\tau \leq \int_{t_0}^t \left[D_0\left[x_0, \theta \right] + D_0\left[u(s), \theta \right] \right] d\tau
\]
\[
\leq |t - t_0| |L_f(D_0[x_0, \theta] + B)
\]

and
\[
\int_{t_0}^t \int_{t_0}^s D_0\left[h(s, \tau, x_0(\tau), u(\tau)), \theta \right] d\tau ds \leq \int_{t_0}^t \int_{t_0}^s \left[D_0\left[x_0, \theta \right] + D_0\left[u(\tau), \theta \right] \right] d\tau ds
\]
\[
\leq \frac{(t-t_0)^2}{2!} L_h(D_0[x_0, \theta] + B)
\]

From these results, we have the following evaluation
\[
D_0[x(t), x_0] = D_0\left[x_0 + \int_{t_0}^t f(s, x_0(s), u(s))ds + \int_{t_0}^t \int_{t_0}^s h(s, \tau, x_0(\tau), u(\tau))d\tau ds
\]
\[
+ \int_{t_0}^t g\left(s, x_0(s), \int_{t_0}^s k(s, \tau, x_0(\tau), u(\tau))d\tau, u(s)\right)ds, x_0
\]
\[
\leq \int_{t_0}^t D_0\left[f(s, x_0(s), u(s)), \theta \right] d\tau + \int_{t_0}^t \int_{t_0}^s D_0\left[h(s, \tau, x_0(\tau), u(\tau)), \theta \right] d\tau ds
\]
\[
+ \int_{t_0}^t D_0\left[g\left(s, x_0(s), \int_{t_0}^s k(s, \tau, x_0(\tau), u(\tau))d\tau, u(s)\right), \theta \right] ds
\]
\[
\leq 2L_f M |t - t_0| + 2L_g M \frac{(t-t_0)^2}{2!}
\]
\[
\leq 2MM_1 \left(\frac{|t - t_0|}{1!} + \frac{(t-t_0)^2}{2!} \right)
\]

with \(M = D_0[x_0, \theta] + B, L_f G = \max\{L_f, L_g\}, L_f G_k = \max\{L_f L_k, L_g\} \) and \(M_1 = \max\{L_f G, L_f G_k\} \)

Now assume that \(\{x_n\} \) is levelwise continuous on \(|t - t_0| \leq \sigma \) and that
\[
D_0[x_n(t), x_n] \leq 2MM_1 \left(\frac{|t - t_0|}{1!} + \frac{(t-t_0)^2}{2!} \right)
\]

Let us prove there a fuzzy set-valued sequences \(\{x_n(t)\} \) such that \(D_0[x_n(t), x(t)] \to 0 \) uniformly on \(|t - t_0| \leq \sigma \) as \(n \to \infty \). For \(n = 2 \), we have
Observe that for \(1, 2, 3, \ldots, n\), one has

\[
D_0[x_i(t), x_i(t)] =
\left[x_0 + \int_0^t f(s, x_i(s), u(s))ds + \int_0^t \int_0^s h(s, \tau, x_i(\tau), u(\tau))d\tau ds
\right.
+ \int_0^t g\left(s, x_i(s), \int_0^s k(s, \tau, x_i(\tau), u(\tau))d\tau, u(s)\right)ds,
\]

\[
D_0\left[x_0 + \int_0^t f(s, x_i(s), u(s))ds + \int_0^t \int_0^s h(s, \tau, x_i(\tau), u(\tau))d\tau ds
\right.
\left. + \int_0^t g\left(s, x_i(s), \int_0^s k(s, \tau, x_i(\tau), u(\tau))d\tau, u(s)\right)ds,
\right]
\]

\[
\leq \int_0^t D_0[f(s, x_i(s), u(s)), f(s, x_i(s), u(s))]ds + \int_0^t \int_0^s D_0[h(s, \tau, x_i(\tau), u(\tau)), h(s, \tau, x_i(\tau), u(\tau))]d\tau ds
\]

\[
+ \int_0^t D_0\left[g\left(s, x_i(s), \int_0^s k(s, \tau, x_i(\tau), u(\tau))d\tau, u(s)\right), g\left(s, x_i(s), \int_0^s k(s, \tau, x_i(\tau), u(\tau))d\tau, u(s)\right)\right] ds
\]

\[
\leq \int_0^t D_0[x_i(s), x_i(s)]ds + \int_0^t \int_0^s D_0[x_i(\tau), x_i(\tau)]d\tau ds + \int_0^t \int_0^s D_0[x_i(\tau), x_i(\tau)]d\tau ds
\]

\[
\leq 2\int_0^t D_0[x_i(s), x_i(s)]ds + 2\int_0^t \int_0^s D_0[x_i(\tau), x_i(\tau)]d\tau ds
\]

\[
\leq 4MM\left(\frac{(t-t_0)^2}{2.1!} + \frac{(t-t_0)^3}{3.2!} + \frac{(t-t_0)^4}{4.3.2!}\right)
\]

\[
\leq 4MM\left(\frac{\sigma^2}{2.1!} + \frac{\sigma^3}{3.2!} + \frac{\sigma^4}{4.3.2!}\right)
\]

Observe that for \(1, 2, 3, \ldots, n\), one has

\[
x_i(t) = x_0 + \int_0^t f(s, x_{i-1}(s), u(s))ds + \int_0^t \int_0^s h(s, \tau, x_{i-1}(\tau), u(\tau))d\tau ds
\]

\[
+ \int_0^t g\left(s, x_{i-1}(s), \int_0^s k(s, \tau, x_{i-1}(\tau), u(\tau))d\tau, u(s)\right)ds
\]

\[
x_{i-1}(t) = x_i + \int_0^t f(s, x_i(s), u(s))ds + \int_0^t \int_0^s h(s, \tau, x_i(\tau), u(\tau))d\tau ds
\]

\[
+ \int_0^t g\left(s, x_i(s), \int_0^s k(s, \tau, x_i(\tau), u(\tau))d\tau, u(s)\right)ds
\]

We have
and consequently,
$$D_0[x_{n+1}(t), x_n(t)] \leq 2^{n+1}MM_1 \left(\sum_{i=1}^{n} \frac{1}{i!} + 2 \frac{\sigma^{n+1}}{(n+1)!} + \frac{\sigma^{n+2}}{(n+2)!} \right)$$

(3.4)

The series $\sum_{i=1}^{\infty} \frac{1}{i!}$ is convergent. From (3.4) it follows that $D_0[x_{n+1}(t), x_n(t)] \to 0$ uniformly on $|t - t_0| \leq \sigma$ as $n \to \infty$. Now, we want to show that limit process is solution to (3.1). Indeed, we show that \{x_n(t)\} satisfies (3.1), we have

$$D_0[x_n(t), x_{n-1}(t)] + D_0 \left[x_n(t), x_n(t) + \int_{t_0}^{t} f(s, x(s), u(s))ds + \int_{t_0}^{t} \int_{t_0}^{s} h(s, \tau, x(\tau), u(\tau))d\tau ds
+ \int_{t_0}^{t} g(s, x(s), u(s), \int_{t_0}^{t} k(s, \tau, x(\tau), u(\tau))d\tau)ds, \right]$$

$$\leq \int_{t_0}^{t} D_0[f(s, x(s), u(s))ds + \int_{t_0}^{t} D_0\left[h(s, \tau, x_n(\tau), u(n))d\tau ds
+ \int_{t_0}^{t} D_0\left[g(s, x_n(s), \int_{t_0}^{t} k(s, \tau, x_n(\tau), u(n))d\tau, u(s)\right]ds,
$$

and consequently,

$$D_0[x_{n+1}(t), x_n(t)] \leq 2^{n+1}MM_1 \left(\sum_{i=1}^{n} \frac{1}{i!} + 2 \frac{\sigma^{n+1}}{(n+1)!} + \frac{\sigma^{n+2}}{(n+2)!} \right)$$

We consider $D_0(x_n(t), x_{n-1}(t)) \to 0$ uniformly converges to zero and

$$D_0 \left[x_n(t), x_n(t) + \int_{t_0}^{t} f(s, x_{n-1}(s), u(s))ds + \int_{t_0}^{t} \int_{t_0}^{s} h(s, \tau, x_{n-1}(\tau), u(\tau))d\tau ds
+ \int_{t_0}^{t} g(s, x_{n-1}(s), \int_{t_0}^{t} k(s, \tau, x_{n-1}(\tau), u(\tau))d\tau, u(s)\right]ds$$
Therefore, with any fixed $t \in T$. Hence the existence of solutions is proven.

If we have two solutions $x(t), y(t)$ of (3.1) with condition $x_0 = y_0$. We have to prove that $D_0[x(t), y(t)] = 0$. We have

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s), u(s)) ds + \int_{t_0}^{t} \int_{t_0}^{s} h(s, \tau, x(\tau), u(\tau)) d\tau ds$$
$$+ \int_{t_0}^{t} g(s, x(s), u(s), \int_{t_0}^{s} k(s, \tau, x(\tau), u(\tau)) d\tau) ds$$

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s), u(s)) ds + \int_{t_0}^{t} \int_{t_0}^{s} h(s, \tau, y(\tau), u(\tau)) d\tau ds$$
$$+ \int_{t_0}^{t} g(s, y(s), u(s), \int_{t_0}^{s} k(s, \tau, y(\tau), u(\tau)) d\tau) ds$$

By using assumption above, we infer that
Using Gronwall’s inequality (see [2]), we get

\[D_0[x(t), y(t)] \leq 2D_0[x_0, y_0] \exp\{4(\mathcal{L}f\mathcal{g}\mathcal{h} + \sigma\mathcal{L}g\mathcal{k})\} \]

By \(x_0 = y_0 \) then \(D_0[x_0, y_0] = 0 \). It implies \(D_0[x(t), y(t)] = 0 \) Hence, the unique of solutions is proved.

\[□ \]

Acknowledgements

The authors gratefully acknowledge the referees for their careful reading and many valuable remarks which improved the presentation of the paper.

References

