AN UNORTHODOX PARAMETRIC MEASURE OF INFORMATION AND CORRESPONDING MEASURE OF INTUITIONISTIC FUZZY INFORMATION

P. Jha, Vikas Kumar Mishra

1Department of Mathematics, Y.J. Govt. Chhattisgarh P.G. College, Raipur, Chhattisgarh, India
2Department of Mathematics, Rungta College of Engineering and Technology, Raipur, Chhattisgarh, India

Keywords: measure of entropy, directed divergence, intuitionistic fuzzy entropy, intuitionistic fuzzy directed divergence, information theory.

Abstract: A new parametric function

\[v_\alpha(p) = \log(1 + \alpha) - \sum_{i=1}^{n} \log \left(\frac{1 + \alpha p_i}{p_i} \right) - 1, \alpha > 0 \]

(2.1.1)

is proposed for the probability distribution \(p_1, p_2, p_3, \ldots, p_n \) and its properties are studied. In this paper the given functions is twice differentiable and is used to obtain the related measure of directed divergence, measure of intuitionistic fuzzy entropy, measure of intuitionistic fuzzy directed divergence. We also investigate the monotonic character of the proposed function.

1. Introduction

In the present paper we draw our inspiration for obtaining a new parametric measure of entropy which is the joint effect of measures of information due to Kapur [6] and Burg [2]. In 1948, C.E. Shannon [8] gave the measure

\[S(P) = - \sum_{i=1}^{n} p_i \log p_i \]

(1.1)

to measure its uncertainty or entropy. It can also be regarded as a measure of equality of \(p_1, p_2, p_3, \ldots, p_n \) among themselves.

\[B(P) = \sum_{i=1}^{n} \log p_i \]

(1.2)

and

\[K_\alpha(P) = - \sum_{i=1}^{n} p_i \log p_i + \frac{1}{\alpha} \sum_{i=1}^{n} (1 + \alpha p_i) - \frac{1}{\alpha} (1 + \alpha) \log(1 + \alpha) \]

(1.3)

Shannon’s and Burg’s measures do not have any parameter, while Kapur’s measure has one parameter. When maximized by Lagrange’s method, subject to linear constraints on probabilities, the measures due to Shannon, Burg and Kapur always give non-negative probabilities. Shannon’s measure has been the most successful and most widely used measure. Burg’s measure has also been successful, but it is always negative and as such it is hard to interpret it as a measure of uncertainty. However, it can be used for entropy maximization purposes and it has been so used. Moreover, its maximum value decreases with \(n \) and this is not a desirable property for a measure of entropy. In the present discussion, we modify the Burg’s and Kapur’s measures to obtain a new parametric measure of entropy. We shall also study the properties of the measure and also investigate the related directed divergence motivated by Kullback-Liebler [7]. In this paper we introduce the
corresponding measure of intuitionistic fuzzy entropy and measure of intuitionistic fuzzy directed divergence.
Here we define intuitionistic fuzzy set as given by Atanasov (1983) [1] and then we discuss about the conditions of measure of intuitionistic fuzzy entropy.

Intuitionistic fuzzy set: Let a set be fixed. An intuitionistic fuzzy set (IFs) A of E is an object having the form $A = \{x, \mu_A(x), v_a(x) > x \in E\}$ where the function $\mu_A: E \rightarrow [0,1]$ and $v_a: E \rightarrow [0,1]$ define respectively the degree of membership and degree of non membership of the element $x \in E$ to the set A, which is a subset of E and for every $x \in E$, $0 \leq \mu_A(x) + v_a(x) \leq 1$

Conditions for measures of intuitionistic fuzzy entropy:-

1. It should be defined in the range $0 \leq \mu_A(x) + v_a(x) \leq 1$
2. It should be continuous in this range.
3. It should be zero when $\mu_A(x) = 0$ and $v_a(x) = 1$.
4. It should not be changed when $\mu_A(x)$ changed in to $v_a(x)$.
5. It should be increasing function of $\mu_A(x)$ in the range $0 \leq \mu_A(x) \leq 0.5$ and decreasing function of $v_a(x)$ in the range $0 \leq v_a(x) \leq 0.5$
6. It should be concave function $\mu_A(x)$.

2. Our Results

2.1. Some Properties of the New Measures of Information

The measure is defined by

$$v_a(p) = \log(1 + a) - \sum_{i=1}^{n} \log \left(1 + \frac{ap_i}{p_i}\right) - 1, a > 0$$

(2.1.1)

It has the following properties:

1. It is a continuous function of $p_1, p_2, p_3, \ldots \ldots p_n$ so that it changes by a small amount when $p_1, p_2, p_3, \ldots \ldots p_n$ change by small amounts.
2. It is a permutationally symmetric function of $p_1, p_2, p_3, \ldots \ldots p_n$ i.e. the function does not change when $p_1, p_2, p_3, \ldots \ldots p_n$ are permuted among themselves.
3. It is maximum, subject to natural constrai

$$\sum_{i=1}^{n} p_i = 1$$

When $p_1 = p_2 = \ldots \ldots = p_n = \frac{1}{n}$

(2.1.2)

4. The maximum value is an increasing function of n. In fact the maximum value is given by

$$f(n) = \log(1 + a) - \sum_{i=1}^{n} \log(1 + a/n) + \sum_{i=1}^{n} \log \frac{1}{n} - 1$$

(2.1.3)

$$= \log(1 + a) - n\log\left(\frac{n + a}{n}\right) + n\log \frac{1}{n} - 1$$

(2.1.4)

so that $f'(n) = -\frac{n}{n+a} + \log\left(\frac{1}{n+a}\right)$

(2.1.5)

and $f''(n) = (-a)/(n + a)^2 - 1/(n + a) < 0$

(2.1.6)

So that $f(n)$ is a concave function of n and $f'(n)$ is a monotonic increasing function of n.

Now

$$f'(n) = -\frac{n}{n+a} + \log\left(\frac{1}{n+a}\right)$$
\[V(A) = \log(1 + a) - \sum_{i=1}^{n} \log \left(\frac{1 + a \mu_A(x_i)}{\mu_A(x_i)} \right) - \sum_{i=1}^{n} \left(\frac{1 + a v_A(x_i)}{v_A(x_i)} \right) - 1, a > 0 \quad (2.2.1) \]

It has the following properties:
1. It is defined in the range \(0 \leq \mu_A(x_i) + v_A(x_i) \leq 1 \)
2. It is continuous in this range
3. It is zero when \(\mu_A(x_i) = 0 \) and \(v_A(x_i) = 1 \)
4. It does not change when \(\mu_A(x_i) \) changed in to \(v_A(x_i) \)
5. It is increasing function of \(\mu_A(x_i) \) in the range \(0 \leq \mu_A(x_i) \leq 0.5 \) and decreasing function of \(v_A(x_i) \) in the range \(0 \leq v_A(x_i) \leq 0.5 \)

Let \(\mu_A(x_i) = s \) and \(v_A(x_i) = t \) then

\[f(s, t) = \log(1 + a) - \log(1 + as) + \log s - \log(1 + at) + \log t - 1 \quad (2.2.2) \]

differentiate wrt. \(s \) we get

\[f'(s, t) = \frac{-1}{1 + as} + \frac{1}{s} \quad (2.2.3) \]

\[f'(s, t) = \frac{-a}{(1 + as)^2} - \frac{1}{s^2} < 0 \quad (2.2.4) \]

So It is a concave function of \(\mu_A(x_i) \)

Since all the conditions for measures of intutionistic fuzzy entropy are satisfying very well and therefore (2.2.1) is a valid measure of intutionistic fuzzy entropy.

2.3. Corresponding Measure of Directed Divergence
Motivated by Kullback and Liebler [8] we get the corresponding measure of directed divergence,

\[D_a(P: Q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i} - \sum_{i=1}^{n} p_i \log \frac{1 + ap_i}{1 + aq_i} \quad (2.3.1) \]

Here \(D_a(P: Q) \) satisfies the properties \(D_a(P: Q) \geq 0 \), vanishes iff \(Q=P \) and is a convex function of both \(p_1, p_2, p_3, \ldots, p_n \) and \(q_1, q_2, q_3, \ldots, q_n \).
2.4. Corresponding Measure of Intuitionistic Fuzzy Directed Divergence

\[
D_a(A: B) = \sum_{i=1}^{n} \mu_A(x_i) \log \frac{\mu_A(x_i)}{\mu_B(x_i)} + \sum_{i=1}^{n} \nu_A(x_i) \log \frac{\nu_A(x_i)}{\nu_B(x_i)} - \sum_{i=1}^{n} \mu_A(x_i) \log \frac{1 + a\mu_A(x_i)}{1 + a\mu_B(x_i)} - \sum_{i=1}^{n} \nu_A(x_i) \log \frac{1 + a\nu_A(x_i)}{1 + a\nu_B(x_i)}
\]

(2.4.1)

It is a convex function of \(\mu_A(x_i) \). Since \(D_a(A: B) \) satisfies all the conditions for measures of intuitionistic fuzzy directed divergence therefore (2.4.1) is a valid measure of intuitionistic fuzzy directed divergence.

3. References