Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BMSA > Volume 20 > Ablowitz-Kaup-Newel-Segur Formalism and N-Soliton...
< Back to Volume

Ablowitz-Kaup-Newel-Segur Formalism and N-Soliton Solutions of Generalized Shallow Water Wave Equation

Full Text PDF


We apply Ablowitz-Kaup-Newel-Segur hierarchy to derive the generalized shallow waterwave equation and we also investigate N-soliton solutions of the derived equation using InverseScattering Transform method and Hirota’s bilinear method.


Bulletin of Mathematical Sciences and Applications (Volume 20)
S. Das, "Ablowitz-Kaup-Newel-Segur Formalism and N-Soliton Solutions of Generalized Shallow Water Wave Equation", Bulletin of Mathematical Sciences and Applications, Vol. 20, pp. 25-35, 2018
Online since:
November 2018

[1] V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP. 34(1) (1972) 62.

[2] M.J. Ablowitz et al., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53(4) (1974) 249.

[3] R.S. Palais, The Symmetris of Solitons, Bulletin of the American Mathematical Society. 34(4) (1997) 339-403.

[4] M.J. Ablowitz et al., Method for solving the sine-Gordon equation, Phys. Rev. Lett. 30(25) (1973) 1262.

[5] B. Bagchi, S. Das, A. Ganguly, New exact solutions of a generalized shallow water wave equation, Physica Scripta. 82(2) (2010) 025003.


[6] P.A. Clarkson, E.L. Mansfield, On a shallow water wave equation, Nonlinearity. 7(3) (1994) 975.

[7] A-M Wazwaz, Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota's method, tanh-coth method and Exp-function method, Appl. Math. and Comp. 202(1) (2008) 275-286.


[8] M.R. Gupta, Exact inverse scattering solution of a non-linear evolution equation in a non-uniform medium, Phys. Lett. A 72(6) (1979) 420-422.


[9] P.G. Drazin, R.S. Johnson, Solitons: An Introduction, Cambridge University press, London, (1983).

[10] M. Lakshmanan, S. Rajasekar, Nonlinear dynamics : Integrability, Chaos and Patterns, Advanced Texts in Physics, Springer-Verlag, Berlin, (2003).

[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, (2004).

[12] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, New York: Dover Publications, (1972).

[13] M. Musette, R. Conte, Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations, J. Math. Phys. 32(6) (1991) 1450-1457.

Show More Hide
Cited By:
This article has no citations.