This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] K.A. Gepreel, S. Omran, Exact solutions of nonlinear fractional partial differential equation, Chinese Physics B. 21(11) (2017) 110204.
DOI: https://doi.org/10.1088/1674-1056/21/11/110204[2] O. Guner, E. Aksoy, A. Bekir, A.C. Cevikel, Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Computers & Mathematics with Applications. 71(6) (2016) 1259-1269.
DOI: https://doi.org/10.1063/1.4952085[3] M.N. Ali, M.S. Osman, S.M. Husnine, On the analytical solutions of conformable time-fractional extended Zakharov-Kuznetsov equation through G'G2-expansion method and the modified Kudryashov method, SeMA Journal. (2018)..
DOI: https://doi.org/10.1007/s40324-018-0152-6[4] H.M. Baskonus, D.A. Koc, H. Bulut, New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Science Letters A. 7(2) (2016) 67-76.
[5] F.S. Khodadad, F. Nazari, M. Eslami, H. Rezazadeh, Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity, Optical and Quantum Electronics. 49 (2017) 384.
DOI: https://doi.org/10.1007/s11082-017-1225-y[6] Y.-L. Jiang, Y. Lu, C. Chen, Conservation Laws and optimal system of extended quantum Zakharov-Kuznetsov equation, Journal of Nonlinear Mathematical Physics. 23(2) (2016) 157-166.
DOI: https://doi.org/10.1080/14029251.2016.1161258[7] B. Lu, The first integral method for some time fractional differential equation, Journal of Mathematical Analysis and Applications. 395(2) (2012) 684-693.
[8] E.V. Krishnan, Q. Zhou, A. Biswas, Solitons and shock waves to Zakharov-Kuznetsov equation with dual-power-law nonlinearity in plasmas, Proceedings of the Romanian Academy, Series A. 17(2) (2016) 137-143.
[9] D. Baleanu, M. Inc, A. Yusuf, A.I. Aliyu, Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation, Nonlinear Analysis: Modelling and Control. 22(6) (2017) 861-876.
DOI: https://doi.org/10.15388/na.2017.6.9[10] A. Bekir, O. Guner, Exact solutions of nonlinear fractional differential equations by G'G-expansion method, Chinese Physics B. 22(11) (2013) 110202.
DOI: https://doi.org/10.1088/1674-1056/22/11/110202[11] C. Chen, Y.-L. Jiang, Lie group analysis for two classes of fractional differential equations, Communications in Nonlinear Science and Numerical Simulation. 26(1-3) (2015) 24-35.
DOI: https://doi.org/10.1016/j.cnsns.2015.01.018[12] K.A. Gepreel, The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations, Applied Mathematics Letters. 24(8) (2011) 1428-1434.
DOI: https://doi.org/10.1016/j.aml.2011.03.025[13] A. Cesar, S. Gómez, A nonlinear fractional Sharma–Tasso–Olver equation: New exact solutions, Applied Mathematics and Computation. 266 (2015) 385-389.
DOI: https://doi.org/10.1016/j.amc.2015.05.074[14] Y. Pandir, Y. Gurefe, New exact solutions of the generalized fractional Zakharov-Kuznetsov equations, Life Science Journal. 10(2) (2013) 2701-2705.
[15] M.N. Ali, S.M. Husnine, A. Saha, S.K. Bhowmik, S. Dhawan, T. Ak, Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma-Tasso-Olver equation, Nonlinear Dynamics. (2018)..
DOI: https://doi.org/10.1007/s11071-018-4457-x[16] B. Zheng, Exp-function method for solving fractional partial differential equations, The Scientific World Journal. 2013 (2013) 465723.
DOI: https://doi.org/10.1155/2013/465723[17] S. Sahoo, S.S. Ray, Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations, Computers & Mathematics with Applications. 70(2) (2015) 158-166.
DOI: https://doi.org/10.1016/j.camwa.2015.05.002[18] S.T. Demiray, Y. Pandır, H. Bulut, Generalized Kudryashov method for time-fractional differential equations, Abstract and Applied Analysis. 2014 (2014) 901540.
DOI: https://doi.org/10.1155/2014/901540[19] V.E. Zakharov, E.A. Kuznetsov, On three-dimensional solitons, Soviet Physics. 39 (1974) 285-288.
[20] A.-M. Wazwaz, Solitary waves solutions for extended forms of quantum Zakharov–Kuznetsov equations, Physica Scripta. 85(2) (2012) 025006.
DOI: https://doi.org/10.1088/0031-8949/85/02/025006[21] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Applied Mathematics Letters. 22(3) (2009) 378-385.
DOI: https://doi.org/10.1016/j.aml.2008.06.003