This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] T. Koriatinits, Y. Shi, Concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction, Med. Eng. Phys. 28(7) (2006) 623–628.
DOI: https://doi.org/10.1016/j.medengphy.2005.10.004[2] M.N. Spijker, Stiffness in numerical initial value problems, Journal of Computational and Applied Mathematics. 72(2) (1996) 393–406.
DOI: https://doi.org/10.1016/0377-0427(96)00009-x[3] T. Korakianitis, Y. Shi, Numerical simulation of cardiovascular dynamics with healthy and diseased heart valve, Journal of Biomechanics. 39 (2006) 1964 - (1982).
DOI: https://doi.org/10.1016/j.jbiomech.2005.06.016[4] Y. Shi, Lumped-parameter modelling of cardiovascular system dynamics under different healthy and diseased conditions. Sheffield, UK: Thesis submitted to Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health, University of Sheffield, (2013).
[5] J.C. Butcher, Numerical methods for ordinary differential equations in the 20th century, Journal of Computational and Applied Mathematics. 125(1) (2000) 1–29.
DOI: https://doi.org/10.1016/s0377-0427(00)00455-6[6] T.E. Hull, W.H. Enright, A.E. Sedgwick, Comparing numerical methods for ordinary differential equations, SIAM Journal on Numerical Analysis. 9(4) (1972) 603-637.
DOI: https://doi.org/10.1137/0709052[7] F.T. Krogh, On testing a subroutine for the numerical integration of ordinary differential equations, Journal of the ACM (JACM). 20(4) (1973) 545-562.
DOI: https://doi.org/10.1145/321784.321786[8] G.D. Byrne, A.C. Hindmarsh, Stiff ODE solvers: a review of current and coming attractions, Journal of Computational Physics. 70(1) (1987) 1-62.
DOI: https://doi.org/10.1016/0021-9991(87)90001-5[9] T.D. Bui, A.K. Oppenheim, D.T. Pratt, Recent advances in methods for numerical solution of O.D.E. initial value problems, Journal of Computational and Applied Mathematics. 11 (1984) 283-296.
DOI: https://doi.org/10.1016/0377-0427(84)90003-7[10] H.W. Enright, T.E. Hull, B. Lindberg, Comparing numerical methods for stiff systems of ODE's, BIT Numerical Mathematics. 15(1) 1975 10-48.
DOI: https://doi.org/10.1007/bf01932994[11] L. F. Shampine, Stiff and nonstiff differential equation solvers, II: Detecting stiffness with Runge-Kutta methods, ACM Transactions on Mathematical Software (TOMS). 3(1) (1977) 44-53.
DOI: https://doi.org/10.1145/355719.355722[12] L.F. Shampine, Evaluation of a test set for stiff ODE solvers, ACM Transactions on Mathematical Software (TOMS). 7(4) (1981) 409-420.
DOI: https://doi.org/10.1145/355972.355973[13] L. Petzold, Automatic selection of methods for solving stiff and non-stiff systems of ordinary differential equations, SIAM Journal on Scientific and Statistical Computing, 4(1) (1983) 136-148.
DOI: https://doi.org/10.1137/0904010[14] W.H. Enright, J.D. Pryce, Two FORTRAN packages for assessing initial value methods, ACM Transactions on Mathematical Software (TOMS). 13(1) (1987) 1-27.
DOI: https://doi.org/10.1145/23002.27645[15] L.F. Shampine, R.M. Corless, Initial value problems for ODEs in problem solving environments, Journal of Computational and Applied Mathematics. 125 (2000) 31-40.
DOI: https://doi.org/10.1016/s0377-0427(00)00456-8[16] D. Petcu, Software issues in solving initial value problems for ordinary differential equations, Creative Math. 13 (2004) 97-110.
[17] A. Sandu et al., Benchmarking stiff ode solvers for atmospheric chemistry problems-I. Implicit vs Explicit, Atmospheric Environment. 31(19) (1997) 3151-3166.
DOI: https://doi.org/10.1016/s1352-2310(97)00059-9[18] L.A. Nejad, A comparison of stiff ODE solvers for astrochemical kinetics problems, Astrophysics and Space Science. 299(1) (2005) 1-29.
DOI: https://doi.org/10.1007/s10509-005-2100-z[19] S. Abelman, K.C. Patidar, Comparison of some recent numerical methods for initial-value problems for stiff ordinary differential equations, Computers & Mathematics with Applications. 55(4) (2008) 733-744.
DOI: https://doi.org/10.1016/j.camwa.2007.05.012[20] S. Dallas, K. Machairas, A Comparison of ODE solvers for dynamical systems with impacts, Journal of Computational and Nonlinear Dynamics, Special Issue on Dynamics of Systems with Impacts. (2017). doi: 10. 1115/1. 4037074.
DOI: https://doi.org/10.1115/1.4037074[21] A. Ryuichi, N. Michihiro, V. Remi, Behind and beyond the MATLAB ODE Suite. CRM-2651, (2000).
[22] M.A. Natick, Using MATLAB version 5. 1, The MathWorks, (1997).
[23] J.F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput. 18(1) (1997) 1-22.
[24] F. Scheid, Schaum's outline of theory and problems of numerical analysis, Second Edition, McGraw-Hill Companies Inc., 1988, pp.184-240.
[25] J.D. Lambert, Numerical methods for ordinary differential equations: the initial value problem, Chichester, John Wiley & Sons, Inc., (1991).
[26] I. Farago, Numerical methods for ordinary differential equations, Eotvos Lorand University, (2013).
[27] E. Kreyszig, Advance engineering mathematics, John Wiley & Sons, Inc., (2006).
[28] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae, Journal of Computational Mathematics. 6(1) (1980) 19-26.
DOI: https://doi.org/10.1016/0771-050x(80)90013-3[29] E. Fehlberg, Klassische Runge-Kutta-formula vierter und niedrigerer ordnung mit schrittweiten-kontrolle und ihre anwendung auf waermeleitungsprobleme, Computing. 6(1) (1970) 61-71.
DOI: https://doi.org/10.1007/bf02241732[30] L.F. Shampine, Some practical Runge-Kutta formulas, Math. Comp. 46(173) (1986) 135-150.
DOI: https://doi.org/10.1090/s0025-5718-1986-0815836-3[31] P. Bogacki, L.F. Shampine, An efficient Runge-Kutta (4, 5) pair, Computer Maths. Applied. 32(6) (1996) 15-28.
DOI: https://doi.org/10.1016/0898-1221(96)00141-1[32] L. Brugnano, D. Trigiante, Solving differential problems by multistep, initial and boundary value methods, Gordon and Breach, Amsterdam, (1998).
[33] F. Lavernano, F. Mazzia, Solving ordinary differential equations by generalised Adams method: properties and implementation techniques, Applied Numerical Mathematics. 28(2-4) (1998) 107-126.
DOI: https://doi.org/10.1016/s0168-9274(98)00039-7[34] Y.Y. Lui, Numerical methods for differential equations, Hongkong: Lecture Note, Department of Mathematics, City University of Hongkong, Kowloon, (2016).
[35] E. Hairer, G. Wanner, Solving differential equations II, stiff and differential algebraic problems, Springer-Verlag, Berlin, 1991, pp.5-8.
DOI: https://doi.org/10.1007/978-3-662-09947-6_3[36] J.D. Verwer, A second-order Rosenbrock method applied to photochemical dispersion problems, SIAM Journal of Scientific Computation. 20 (1999) 1456-1480.
DOI: https://doi.org/10.1137/s1064827597326651[37] E. Hairer, G. Wanner, On the instability of the BDF formulas, SIAM Journal of Numerical Anal. 20(6) (1983) 1206-1209.
DOI: https://doi.org/10.1137/0720090[38] D. Omale, P.B. Ojih, M.O. Ogwo, Mathematical analysis of stiff and non-stiff initial value problems of ordinary differential equation using MATLAB, International Journal of Scientific & Engineering Research. 5(9) (2014) 49-59.
[39] S.A. Belmana, K.C. Patidarb, Comparison of some recent numerical methods for initial-value problems for stiff ordinary differential equations, Computers and Mathematics with Applications. 55 (2007) 733–744.
DOI: https://doi.org/10.1016/j.camwa.2007.05.012[40] S.A.M. Yatim et al., A quantitative comparison of numerical method for solving stiff ordinary differential equations, Mathematical Problems in Engineering. (2011) 1-12.
[41] E. Cocherova, Modification of ordinary differential equations MATLAB solver, Radioengineering. 12(4) (2003) 63-66.
[42] J. Hall, A. Guyton, Textbook of medical physiology, Eleventh Edition, Philadelphia, Pennyslvania: Elsevier Saunders, (2006).
[43] R.M. Bernie, M.N. Levy, Cardiovascular physiology, St Louis, MO, Mosby, (2001).
[1] E. Emagbetere, T. Salau, O. Oluwole, "Fixed Points and Stability Analysis in the Motion of Human Heart Valve Leaflet", International Frontier Science Letters, Vol. 14, p. 1, 2019
DOI: https://doi.org/10.18052/www.scipress.com/IFSL.14.1[2] V. Santos Arconada, J. García-Barruetabeña, "Development and validation of a simplified nonlinear dynamic model of a passive twin-tube hydraulic shock absorber", Journal of Vibration and Control, p. 107754632094795, 2020
DOI: https://doi.org/10.1177/1077546320947955[3] H. Xu, A. Badea, X. Cheng, "Analysis of two phase critical flow with a non-equilibrium model", Nuclear Engineering and Design, Vol. 372, p. 110998, 2021
DOI: https://doi.org/10.1016/j.nucengdes.2020.110998[4] H. Xu, A. Badea, X. Cheng, "Development of a new full-range critical flow model based on non-homogeneous non-equilibrium model", Annals of Nuclear Energy, Vol. 158, p. 108286, 2021
DOI: https://doi.org/10.1016/j.anucene.2021.108286