Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BMSA > Volume 19 > Computing F-Index of Different Corona Products of...
< Back to Volume

Computing F-Index of Different Corona Products of Graphs

Full Text PDF

Abstract:

F-index of a graph is equal to the sum of cubes of degree of all the vertices of a given graph. Among different products of graphs, as corona product of two graphs is one of most important, in this study, the explicit expressions for F-index of different types of corona product of are obtained.

Info:

Periodical:
Bulletin of Mathematical Sciences and Applications (Volume 19)
Pages:
24-30
Citation:
N. De "Computing F-Index of Different Corona Products of Graphs", Bulletin of Mathematical Sciences and Applications, Vol. 19, pp. 24-30, 2017
Online since:
Aug 2017
Authors:
Export:
Distribution:
References:

[1] H. Abdoa, D. Dimitrov, I. Gutman, On extremal trees with respect to the F-index, Unpublished manuscript, Available at arXiv: 1509. 03574.

[2] Y. Alizadeh et al., The edge Wiener index of suspensions, bottlenecks, and thorny graphs, Glas. Mat. Ser. III. 49(1) (2014) 1-12.

DOI: https://doi.org/10.3336/gm.49.1.01

[3] H. Bian, X. Ma, E. Vumar, The Wiener-type indices of the corona of two graphs, Ars Combin. 107 (2012) 193-199.

[4] N. De, S.M.A. Nayeem, A. Pal, F-index of some graph operations, Discrete Math. Algorithm. Appl. 8(02) (2016) 1650025.

DOI: https://doi.org/10.1142/s1793830916500257

[5] N. De, S.M.A. Nayeem, A. Pal, The F-coindex of some graph operations, SpringerPlus. 5 (2016) 221.

[6] N. De, S.M.A. Nayeem, Computing the F-index of nanostar dendrimers, Pacific Science Review A: Natural Science and Engineering. 18(1) (2016) 14-21.

DOI: https://doi.org/10.1016/j.psra.2016.06.001

[7] N. De, F-index of total transformation graphs, Unpublished manuscript, Available at arXiv: 1606. 05989.

[8] N. De, F-index and coindex of some derived graphs, Unpublished manuscript, Available at arXiv: 1610. 02175.

[9] N. De, S.M.A. Nayeem, A. Pal, Reformulated first Zagreb index of some graph operations, Math-ematics. 3(4) (2015) 945-960.

DOI: https://doi.org/10.3390/math3040945

[10] N. De, S. M. A. Nayeem, A. Pal, Total eccentricity index of the generalized hierarchical product of graphs, Intern. J. Appl. Comput. Math. 1(3) (2015) 203-511.

[11] N. De, S.M.A. Nayeem, A. Pal, Modified eccentric connectivity index and polynomial of corona product of graphs, Int. J. Compt. Appl. 132(9) (2015) 1-5.

[12] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53(4) (2015) 1184- 1190.

DOI: https://doi.org/10.1007/s10910-015-0480-z

[13] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alter-nant hydrocarbons, Chem. Phys. Lett. 17(4) (1972) 535-538.

DOI: https://doi.org/10.1016/0009-2614(72)85099-1

[14] P. Lu, Y. Miao, Spectra of the subdivision-vertex and subdivision-edge coronae, Unpublished manuscript, Available at arXiv: 1302. 0457.

[15] X. Liu, P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra and Its Applications. 438(8) (2013) 3547-3559.

DOI: https://doi.org/10.1016/j.laa.2012.12.033

[16] R. Malpashree, Some degree and distance based topological indices of vertex-edge corona of two graphs, Journal of the International Mathematical Virtual Institute. 6 (2016) 1-29.

[17] Z. Yarahmadi, A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat. 26(3) (2012) 467-472.

DOI: https://doi.org/10.2298/fil1203467y
Show More Hide