Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BMSA > Volume 19 > Extrapolation Problem for Continuous Time...
< Back to Volume

Extrapolation Problem for Continuous Time Periodically Correlated Isotropic Random Fields

Full Text PDF

Abstract:

The problem of optimal linear estimation of functionals depending on the unknown values of a random field ζ (t, x), which is mean-square continuous periodically correlated with respect to time argument t є R and isotropic on the unit sphere Sn with respect to spatial argument x є Sn. Estimates are based on observations of the field ζ (t, x) + Θ (t, x) at points (t, x) : t < 0; x є Sn, where Θ (t, x) is an uncorrelated with ζ (t, x) random field, which is mean-square continuous periodically correlated with respect to time argument t є R and isotropic on the sphere Sn with respect to spatial argument x є Sn. Formulas for calculating the mean square errors and the spectral characteristics of the optimal linear estimate of functionals are derived in the case of spectral certainty where the spectral densities of the fields are exactly known. Formulas that determine the least favourable spectral densities and the minimax (robust) spectral characteristics are proposed in the case where the spectral densities are not exactly known while a class of admissible spectral densities is given.

Info:

Periodical:
Bulletin of Mathematical Sciences and Applications (Volume 19)
Pages:
1-23
Citation:
I. Golichenko et al., "Extrapolation Problem for Continuous Time Periodically Correlated Isotropic Random Fields", Bulletin of Mathematical Sciences and Applications, Vol. 19, pp. 1-23, 2017
Online since:
Aug 2017
Export:
Distribution:
References:

[1] P. Adshead, W. Hu, Fast computation of first-order feature-bispectrum corrections, Phys. Rev. D. 85(10) (2012) 103531.

[2] J. Antoni, Cyclostationarity by examples, Mechanical Systems and Signal Processing. 23(4) (2009) 987-1036.

DOI: https://doi.org/10.1016/j.ymssp.2008.10.010

[3] J.G. Bartlett, The standard cosmological model and CMB anisotropies, New Astron. Rev. 43(2) (1999) 83-109.

[4] N. Cressie, C.K. Wikle, Statistics for spatio-temporal data, Wiley Series in Probability and Statistics, John Wiley & Sons, (2011).

[5] I.I. Dubovets'ka, O. Yu. Masyutka, M.P. Moklyachuk, Filtering problems for periodically correlated isotropic random fields, Mathematics and Statistics. 2(4) (2014) 162-171.

[6] I.I. Dubovets'ka, O. Yu. Masyutka, M.P. Moklyachuk, Estimation problems for periodically correlated isotropic random fields, Methodology and Computing in Applied Probability. 17(1) (2015) 41-57.

DOI: https://doi.org/10.1007/s11009-013-9339-6

[7] A. Erdelyi et al., Higher transcendental functions. Vol. II, Bateman Manuscript Project, McGraw-Hill Book Co., Inc., New York-Toronto-London, (1953).

[8] J. Franke, Minimax robust prediction of discrete time series, Probability Theory and Related Fields. 68(3) (1985) 337-364.

[9] J. Franke, H.V. Poor, Minimax-robust filtering and finite-length robust predictors, in: Robust and Nonlinear Time Series Analysis. Lecture Notes in Statistics, Springer-Verlag, vol. 26, 1984, pp.87-126.

DOI: https://doi.org/10.1007/978-1-4615-7821-5_6

[10] C. Gaetan, X. Guyon, Spatial statistics and modeling, Springer Series in Statistics, vol. 81, Springer Science & Business Media, (2010).

DOI: https://doi.org/10.1007/978-0-387-92257-7

[11] I.I. Gikhman, A.V. Skorokhod, The theory of stochastic processes. I, Springer, Berlin, (2004).

[12] W.A. Gardner, Cyclostationarity in communications and signal processing, IEEE Press, New York, (1994).

[13] E.G. Gladyshev, Periodically correlated random sequences, Sov. Math. 2 (1961) 385-388.

[14] I.I. Golichenko, O. Yu. Masyutka, M.P. Moklyachuk, Minimax-robust fitering of functionals from periodically correlated random fields, Cogent Mathematics. 2 (2015) 1074327.

DOI: https://doi.org/10.1080/23311835.2015.1074327

[15] I.I. Golichenko, O. Yu. Masyutka, M.P. Moklyachuk, Filtering of continuous time periodically correlated isotropic random fields, Stochastic Modeling and Applications. 20(1) (2016) 17-34.

[16] U. Grenander, A prediction problem in game theory, Arkiv för Matematik. 3 (1957) 371-379.

DOI: https://doi.org/10.1007/bf02589429

[17] W. Hu, S. Dodelson, Cosmic microwave background anisotropies, Annual Review of Astronomy and Astrophysics. 40(1) (2002) 171-216.

DOI: https://doi.org/10.1146/annurev.astro.40.060401.093926

[18] H.L. Hurd, A. Miamee, Periodically correlated random sequences: Spectral theory and practice, Wiley Series in Probability and Statistics, Wiley Interscience, John Wiley and Sons, Inc., New Jersey, (2007).

DOI: https://doi.org/10.1002/9780470182833

[19] P.D. Jones, Hemispheric surface air temperature variations: A reanalysis and an update to 1993, Journal of Climate. 7(11) (1994) 1794-1802.

DOI: https://doi.org/10.1175/1520-0442(1994)007<1794:hsatva>2.0.co;2

[20] T. Kailath, A view of three decades of linear filtering theory, IEEE Transactions on Information Theory. 20(2) (1974) 146-181.

DOI: https://doi.org/10.1109/tit.1974.1055174

[21] R. Kakarala, The bispectrum as a source of phase-sensitive invariants for Fourier descriptors: A group-theoretic approach, Journal of Mathematical Imaging and Vision. 44(3) (2012) 341-353.

DOI: https://doi.org/10.1007/s10851-012-0330-6

[22] G. Kallianpur, V. Mandrekar, Spectral theory of stationary H-valued processes, J. Multivariate Analysis. 1(1) (1971) 1-16.

DOI: https://doi.org/10.1016/0047-259x(71)90026-1

[23] K. Karhunen, Uber lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae. 37 (1947) 1-79.

[24] S.A. Kassam, H.V. Poor, Robust techniques for signal processing: A survey, Proceedings of the IEEE. 73(3) (1985) 433-481.

[25] N. Kogo, N. Komatsu, Angular trispectrum of cmb temperature anisotropy from primordial non-Gaussianity with the full radiation transfer function, Phys. Rev. D. 73(8) (2006) 083007- 083012.

DOI: https://doi.org/10.1103/physrevd.73.083007

[26] A.N. Kolmogorov, Selected works by A.N. Kolmogorov. Vol. II: Probability theory and mathematical statistics, Ed. by A. N. Shiryayev, Mathematics and its Applications, Soviet Series. 26, Dordrecht etc., Kluwer Academic Publishers, (1992).

[27] M. Luz, M. Moklyachuk, Estimates of functionals from processes with stationary increments and cointegrated sequences, NVP Interservis, Kyiv, Ukraine, 2016. (in Ukrainian).

[28] D. Marinucci, G. Peccati, Random fields on the sphere, London Mathematical Society Lecture Notes Series, vol. 389, Cambridge University Press, Cambridge, (2011).

DOI: https://doi.org/10.1111/jtsa.12024

[29] M.P. Moklyachuk, Estimation of linear functionals of stationary stochastic processes and a two-person zero-sum game, Stanford University Technical Report, no. 169, (1981).

[30] M.P. Moklyachuk, Robust estimations of functionals of stochastic processes, Kyiv University, Kyiv, Ukraine, 2008. (in Ukrainian).

[31] M.P. Moklyachuk, Nonsmooth analysis and optimization, Kyiv University, Kyiv, Ukraine, 2008. (in Ukrainian).

[32] M.P. Moklyachuk, Minimax-robust estimation problems for stationary stochastic sequences, Statistics, Optimization & Information Computing. 3(4) (2015) 348-419.

DOI: https://doi.org/10.19139/soic.v3i4.173

[33] M. Moklyachuk, I. Golichenko, Periodically correlated processes estimates, LAP Lambert Academic Publishing, (2016).

[34] M. Moklyachuk, O. Masyutka, Minimax-robust estimation technique for stationary stochastic processes, LAP Lambert Academic Publishing, (2012).

[35] M.P. Moklyachuk, M.I. Yadrenko, Linear statistical problems for homogeneous isotropic random fields on a sphere. I, Theory of Probability and Mathematical Statistics. 18 (1979) 115-124.

[36] M.P. Moklyachuk, M.I. Yadrenko, Linear statistical problems for homogeneous isotropic random fields on a sphere. II, Theory of Probability and Mathematical Statistics. 19 (1980) 129-139.

[37] C. Müller, Spherical harmonics, Lecture Notes in Mathematics, Vol. 17, Springer-Verlag, Berlin-Heidelberg-New York, (1966).

[38] A. Napolitano, Cyclostationarity: New trends and applications, Signal Processing. 120 (2016) 385-408.

DOI: https://doi.org/10.1016/j.sigpro.2015.09.011

[39] G.R. North, R.F. Cahalan, Predictability in a solvable stochastic climate model, J. Atmospheric Sciences. 38(3) (1981) 504-513.

[40] T. Okamoto, W. Hu, Angular trispectra of CMB temperature and polarization, Phys. Rev. D. 66(6) (2002) 063008.

DOI: https://doi.org/10.1103/physrevd.66.063008

[41] R.T. Rockafellar, Convex analysis, Princeton University Press, (1997).

[42] Yu.A. Rozanov, Stationary stochastic processes, Holden-Day, San Francisco-CambridgeLondon-Amsterdam, (1967).

[43] E. Serpedin et al., Bibliography on cyclostationarity, Signal Processing. 85(12) (2005) 2233- 2303.

DOI: https://doi.org/10.1016/j.sigpro.2005.05.002

[44] T. Subba Rao, G. Terdik, Multivariate non-linear regression with applications, in: P. Bertail, P. Doukhan, P. Soulier (eds), Dependence in Probability and Statistics, Springer Verlag, New York, 2006, pp.431-470.

DOI: https://doi.org/10.1007/0-387-36062-x_19

[45] T. Subba Rao, G. Terdik, Statistical analysis of spatio-temporal models and their applications, in: C.R. Rao (ed), Handbook of Statistics, Vol. 30, Elsevier B.V., 2012, pp.521-541.

DOI: https://doi.org/10.1016/b978-0-444-53858-1.00018-1

[46] G. Terdik, Angular spectra for non-Gaussian isotropic fields, Brazilian Journal of Probability and Statistics. 29(4) (2015) 833-865.

DOI: https://doi.org/10.1214/14-bjps249

[47] K.S. Vastola, H.V. Poor, An analysis of the effects of spectral uncertainty on Wiener filtering, Automatica. 19(3) (1983) 289-293.

DOI: https://doi.org/10.1016/0005-1098(83)90105-x

[48] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series. With engineering applications, The M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Mass., (1966).

[49] M.I. Yadrenko, Spectral theory of random fields, Optimization Software Inc. Publications Division, New York, (1983).

[50] A.M. Yaglom, Correlation theory of stationary and related random functions. Vol. 1: Basic results, Springer Series in Statistics, Springer-Verlag, New York etc., (1987).

DOI: https://doi.org/10.1007/978-1-4612-4620-6_2

[51] A.M. Yaglom, Correlation theory of stationary and related random functions. Vol. 2: Suplementary notes and references, Springer Series in Statistics, Springer-Verlag, New York etc., (1987).

DOI: https://doi.org/10.1007/978-1-4612-4628-2
Show More Hide