This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] P. Adshead, W. Hu, Fast computation of first-order feature-bispectrum corrections, Phys. Rev. D. 85(10) (2012) 103531.
[2] J. Antoni, Cyclostationarity by examples, Mechanical Systems and Signal Processing. 23(4) (2009) 987-1036.
DOI: https://doi.org/10.1016/j.ymssp.2008.10.010[3] J.G. Bartlett, The standard cosmological model and CMB anisotropies, New Astron. Rev. 43(2) (1999) 83-109.
[4] N. Cressie, C.K. Wikle, Statistics for spatio-temporal data, Wiley Series in Probability and Statistics, John Wiley & Sons, (2011).
[5] I.I. Dubovets'ka, O. Yu. Masyutka, M.P. Moklyachuk, Filtering problems for periodically correlated isotropic random fields, Mathematics and Statistics. 2(4) (2014) 162-171.
[6] I.I. Dubovets'ka, O. Yu. Masyutka, M.P. Moklyachuk, Estimation problems for periodically correlated isotropic random fields, Methodology and Computing in Applied Probability. 17(1) (2015) 41-57.
DOI: https://doi.org/10.1007/s11009-013-9339-6[7] A. Erdelyi et al., Higher transcendental functions. Vol. II, Bateman Manuscript Project, McGraw-Hill Book Co., Inc., New York-Toronto-London, (1953).
[8] J. Franke, Minimax robust prediction of discrete time series, Probability Theory and Related Fields. 68(3) (1985) 337-364.
[9] J. Franke, H.V. Poor, Minimax-robust filtering and finite-length robust predictors, in: Robust and Nonlinear Time Series Analysis. Lecture Notes in Statistics, Springer-Verlag, vol. 26, 1984, pp.87-126.
DOI: https://doi.org/10.1007/978-1-4615-7821-5_6[10] C. Gaetan, X. Guyon, Spatial statistics and modeling, Springer Series in Statistics, vol. 81, Springer Science & Business Media, (2010).
DOI: https://doi.org/10.1007/978-0-387-92257-7[11] I.I. Gikhman, A.V. Skorokhod, The theory of stochastic processes. I, Springer, Berlin, (2004).
[12] W.A. Gardner, Cyclostationarity in communications and signal processing, IEEE Press, New York, (1994).
[13] E.G. Gladyshev, Periodically correlated random sequences, Sov. Math. 2 (1961) 385-388.
[14] I.I. Golichenko, O. Yu. Masyutka, M.P. Moklyachuk, Minimax-robust fitering of functionals from periodically correlated random fields, Cogent Mathematics. 2 (2015) 1074327.
DOI: https://doi.org/10.1080/23311835.2015.1074327[15] I.I. Golichenko, O. Yu. Masyutka, M.P. Moklyachuk, Filtering of continuous time periodically correlated isotropic random fields, Stochastic Modeling and Applications. 20(1) (2016) 17-34.
[16] U. Grenander, A prediction problem in game theory, Arkiv för Matematik. 3 (1957) 371-379.
DOI: https://doi.org/10.1007/bf02589429[17] W. Hu, S. Dodelson, Cosmic microwave background anisotropies, Annual Review of Astronomy and Astrophysics. 40(1) (2002) 171-216.
DOI: https://doi.org/10.1146/annurev.astro.40.060401.093926[18] H.L. Hurd, A. Miamee, Periodically correlated random sequences: Spectral theory and practice, Wiley Series in Probability and Statistics, Wiley Interscience, John Wiley and Sons, Inc., New Jersey, (2007).
DOI: https://doi.org/10.1002/9780470182833[19] P.D. Jones, Hemispheric surface air temperature variations: A reanalysis and an update to 1993, Journal of Climate. 7(11) (1994) 1794-1802.
DOI: https://doi.org/10.1175/1520-0442(1994)007<1794:hsatva>2.0.co;2[20] T. Kailath, A view of three decades of linear filtering theory, IEEE Transactions on Information Theory. 20(2) (1974) 146-181.
DOI: https://doi.org/10.1109/tit.1974.1055174[21] R. Kakarala, The bispectrum as a source of phase-sensitive invariants for Fourier descriptors: A group-theoretic approach, Journal of Mathematical Imaging and Vision. 44(3) (2012) 341-353.
DOI: https://doi.org/10.1007/s10851-012-0330-6[22] G. Kallianpur, V. Mandrekar, Spectral theory of stationary H-valued processes, J. Multivariate Analysis. 1(1) (1971) 1-16.
DOI: https://doi.org/10.1016/0047-259x(71)90026-1[23] K. Karhunen, Uber lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae. 37 (1947) 1-79.
[24] S.A. Kassam, H.V. Poor, Robust techniques for signal processing: A survey, Proceedings of the IEEE. 73(3) (1985) 433-481.
[25] N. Kogo, N. Komatsu, Angular trispectrum of cmb temperature anisotropy from primordial non-Gaussianity with the full radiation transfer function, Phys. Rev. D. 73(8) (2006) 083007- 083012.
DOI: https://doi.org/10.1103/physrevd.73.083007[26] A.N. Kolmogorov, Selected works by A.N. Kolmogorov. Vol. II: Probability theory and mathematical statistics, Ed. by A. N. Shiryayev, Mathematics and its Applications, Soviet Series. 26, Dordrecht etc., Kluwer Academic Publishers, (1992).
[27] M. Luz, M. Moklyachuk, Estimates of functionals from processes with stationary increments and cointegrated sequences, NVP Interservis, Kyiv, Ukraine, 2016. (in Ukrainian).
[28] D. Marinucci, G. Peccati, Random fields on the sphere, London Mathematical Society Lecture Notes Series, vol. 389, Cambridge University Press, Cambridge, (2011).
DOI: https://doi.org/10.1111/jtsa.12024[29] M.P. Moklyachuk, Estimation of linear functionals of stationary stochastic processes and a two-person zero-sum game, Stanford University Technical Report, no. 169, (1981).
[30] M.P. Moklyachuk, Robust estimations of functionals of stochastic processes, Kyiv University, Kyiv, Ukraine, 2008. (in Ukrainian).
[31] M.P. Moklyachuk, Nonsmooth analysis and optimization, Kyiv University, Kyiv, Ukraine, 2008. (in Ukrainian).
[32] M.P. Moklyachuk, Minimax-robust estimation problems for stationary stochastic sequences, Statistics, Optimization & Information Computing. 3(4) (2015) 348-419.
DOI: https://doi.org/10.19139/soic.v3i4.173[33] M. Moklyachuk, I. Golichenko, Periodically correlated processes estimates, LAP Lambert Academic Publishing, (2016).
[34] M. Moklyachuk, O. Masyutka, Minimax-robust estimation technique for stationary stochastic processes, LAP Lambert Academic Publishing, (2012).
[35] M.P. Moklyachuk, M.I. Yadrenko, Linear statistical problems for homogeneous isotropic random fields on a sphere. I, Theory of Probability and Mathematical Statistics. 18 (1979) 115-124.
[36] M.P. Moklyachuk, M.I. Yadrenko, Linear statistical problems for homogeneous isotropic random fields on a sphere. II, Theory of Probability and Mathematical Statistics. 19 (1980) 129-139.
[37] C. Müller, Spherical harmonics, Lecture Notes in Mathematics, Vol. 17, Springer-Verlag, Berlin-Heidelberg-New York, (1966).
[38] A. Napolitano, Cyclostationarity: New trends and applications, Signal Processing. 120 (2016) 385-408.
DOI: https://doi.org/10.1016/j.sigpro.2015.09.011[39] G.R. North, R.F. Cahalan, Predictability in a solvable stochastic climate model, J. Atmospheric Sciences. 38(3) (1981) 504-513.
[40] T. Okamoto, W. Hu, Angular trispectra of CMB temperature and polarization, Phys. Rev. D. 66(6) (2002) 063008.
DOI: https://doi.org/10.1103/physrevd.66.063008[41] R.T. Rockafellar, Convex analysis, Princeton University Press, (1997).
[42] Yu.A. Rozanov, Stationary stochastic processes, Holden-Day, San Francisco-CambridgeLondon-Amsterdam, (1967).
[43] E. Serpedin et al., Bibliography on cyclostationarity, Signal Processing. 85(12) (2005) 2233- 2303.
DOI: https://doi.org/10.1016/j.sigpro.2005.05.002[44] T. Subba Rao, G. Terdik, Multivariate non-linear regression with applications, in: P. Bertail, P. Doukhan, P. Soulier (eds), Dependence in Probability and Statistics, Springer Verlag, New York, 2006, pp.431-470.
DOI: https://doi.org/10.1007/0-387-36062-x_19[45] T. Subba Rao, G. Terdik, Statistical analysis of spatio-temporal models and their applications, in: C.R. Rao (ed), Handbook of Statistics, Vol. 30, Elsevier B.V., 2012, pp.521-541.
DOI: https://doi.org/10.1016/b978-0-444-53858-1.00018-1[46] G. Terdik, Angular spectra for non-Gaussian isotropic fields, Brazilian Journal of Probability and Statistics. 29(4) (2015) 833-865.
DOI: https://doi.org/10.1214/14-bjps249[47] K.S. Vastola, H.V. Poor, An analysis of the effects of spectral uncertainty on Wiener filtering, Automatica. 19(3) (1983) 289-293.
DOI: https://doi.org/10.1016/0005-1098(83)90105-x[48] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series. With engineering applications, The M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Mass., (1966).
[49] M.I. Yadrenko, Spectral theory of random fields, Optimization Software Inc. Publications Division, New York, (1983).
[50] A.M. Yaglom, Correlation theory of stationary and related random functions. Vol. 1: Basic results, Springer Series in Statistics, Springer-Verlag, New York etc., (1987).
DOI: https://doi.org/10.1007/978-1-4612-4620-6_2[51] A.M. Yaglom, Correlation theory of stationary and related random functions. Vol. 2: Suplementary notes and references, Springer Series in Statistics, Springer-Verlag, New York etc., (1987).
DOI: https://doi.org/10.1007/978-1-4612-4628-2