Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BMSA > Volume 18 > Numerical Solution of Nonlinear Volterra-Fredholm...
< Back to Volume

Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method

Full Text PDF

Abstract:

In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.

Info:

Periodical:
Bulletin of Mathematical Sciences and Applications (Volume 18)
Pages:
50-59
DOI:
10.18052/www.scipress.com/BMSA.18.50
Citation:
S.C. Shiralashetti and R.A. Mundewadi, "Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method", Bulletin of Mathematical Sciences and Applications, Vol. 18, pp. 50-59, 2017
Online since:
May 2017
Export:
Distribution:
References:

[1] M.S. Hashmi, N. Khan, S. Iqbal, Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind, Appl. Math. Comp. 218 (2012) 10982-10989.

[2] R.P. Kanwal, K.C. Liu, A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol. 20 (1989) 411–414.

[3] S. Abbasbandy, E. Shivanian, A new analytical technique to solve Fredholm's integral equations, Numer. Algor. 56(1) (2011) 27–43.

[4] S.H. Behiry, R.A. Abd-Elmonem, A.M. Gomaa, Discrete Adomian decomposition solution of nonlinear Fredholm integral equation, Ain Shams Eng. J. 1 (2010) 97–101.

[5] J. Biazar, H. Ebrahimi, Iteration method for Fredholm integral equations of second kind, Iran. J. Optimi. 1 (2009) 13–23.

[6] J. Biazar, H. Ghazvini, Numerical solution of special non-linear Fredholm integral equation by HPM, Appl. Math. Comput. 195 (2008) 681–687.

[7] J.A. Shali, A.A.J. Akbarfam, G. Ebadi, Approximate solutions of nonlinear Volterra-Fredholm integral equations, Int. J. Non. Sci. 14(4) (2012) 425-433.

[8] E. Hashemizadeh, K. Maleknejad, B. Basirat, Hybrid functions approach for the nonlinear Volterra-Fredholm integral equations, Procedia Comp. Sci. 3 (2011) 1189–1194.

[9] F. Mirzaee, A.A. Hoseini, Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series, Alexa. Eng. Jour. 52 (2013) 551–555.

[10] Y. Ordokhani, H. Dehestani, Numerical solution of the nonlinear Fredholm-Volterra-Hammerstein integral equations via Bessel functions, J. Infor. Comput. Sci. 9 (2014) 123–131.

[11] M. Paripour, M. Kamyar, Numerical solution of nonlinear Volterra-Fredholm integral equations by using new basis functions, J. Commun. Numer. Anal. 2013 (2013) 1–11.

DOI: 10.5899/2013/cna-00170

[12] K. Parand, J.A. Rad, Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comp. 218 (2012) 5292–5309.

DOI: 10.1016/j.amc.2011.11.013

[13] K. Maleknejad, H. Almasieh, M. Roodaki, Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 3293–3298.

DOI: 10.1016/j.cnsns.2009.12.015

[14] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Commun. Pure Appl. Math. 44 (1991) 141–183.

[15] C.K. Chui, Wavelets: a mathematical tool for signal analysis, SIAM, Philadelphia, PA, (1997).

[16] N.M. Bujurke et al., A fast wavelet- multigrid method to solve elliptic partial differential equations, Appl. Math. Comp. 185 (2007) 667–680.

DOI: 10.1016/j.amc.2006.07.074

[17] S.C. Shiralashetti, M.H. Kantli, A.B. Deshi, New wavelet based full-approximation scheme for the numerical solution of nonlinear elliptic partial differential equations, Alex. Eng. J. 55(3) (2016) 2797–2804.

[18] S.C. Shiralashetti, M.H. Kantli, Wavelet based decoupled method for the investigation of surface roughness effects in elastohydrodynamic lubrication problems using couple stress fluid, Ain Shams Eng. J. (2016), Article in press.

DOI: 10.1016/j.asej.2016.04.024

[19] C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEEE Proc. Pt. D. 144(1) (1997) 87–94.

[20] N.M. Bujurke, S.C. Shiralashetti, C.S. Salimath, Numerical solution of stiff systems from non-linear dynamics using single term Haar wavelet series, Inter. Jour. Nonlin. Dynam. 51 (2008) 595–605.

DOI: 10.1007/s11071-007-9248-8

[21] N.M. Bujurke, S.C. Shiralashetti, C.S. Salimath, An application of single term Haar wavelet series in the solution of non-linear oscillator equations, Jour. Comp. Appl. Math. 227 (2010) 234–244.

DOI: 10.1016/j.cam.2008.03.012

[22] N.M. Bujurke, S.C. Shiralashetti, C.S. Salimath, Computation of eigenvalues and solutions of regular Sturm-Liouville problems using Haar wavelets, Jour. Comp. Appl. Math. 219 (2008) 90–101.

[23] S. Islam, I. Aziz, B. Sarler, The numerical solution of second order boundary value problems by collocation method with the Haar wavelets, Math. Comp. Model. 52 (2010) 1577–1590.

[24] S.C. Shiralashetti et al., Haar wavelet method for the numerical solution of Klein–Gordan equations, Asian-European J. Math. 9(01) (2016) 1650012.

[25] S.C. Shiralashetti, A.B. Deshi, An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dyn. 83 (2016) 293–303.

[26] S.C. Shiralashetti, A.B. Deshi, P. B Mutalik Desai, Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Eng. J. 7(2) (2016) 663–670.

[27] S.C. Shiralashetti, A.B. Deshi, Haar wavelet collocation method for solving Riccati and fractional Riccati differential equations, Bulletin. Math. Sci. Appl. 17 (2016) 46–56.

[28] S.C. Shiralashetti et al., Numerical solution of parabolic partial differential equations using adaptive gird Haar wavelet collocation method, Asian-European J. Math. (2016) 1750026.

[29] Ü. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul. 68 (2005) 127-143.

[30] Ü. Lepik, Application of the Haar wavelet transform to solving integral and differential Equations, Proc. Estonian Acad. Sci. Phys. Math. 56(1) (2007) 28–46.

[31] Ü. Lepik, E. Tamme, Application of the Haar wavelets for solution of linear integral equations, in: Dynamical Systems and Applications, Antala. Proce. (2004) 494–507.

[32] Ü. Lepik, E. Tamme, Solution of nonlinear Fredholm integral equations via the Haar wavelet method, Proc. Estonian Acad. Sci. Phys. Math. 56 (2007) 17–27.

[33] E. Babolian, A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, Jour. Comp. Appl. Math. 225 (2009) 87–95.

[34] S.C. Shiralashetti, R.A. Mundewadi, Leibnitz-Haar wavelet collocation method for the numerical solution of nonlinear Fredholm integral equations, Inter. J. Eng. Sci. Res. Tech. 5(9) (2016) 264–273.

DOI: 10.18052/www.scipress.com/bmsa.18.50

[35] I. Aziz, S. Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, Jour. Comp. Appl. Math. 239 (2013) 333–345.

[36] A.M. Wazwaz, Linear and nonlinear integral equations methods and applications, Springer, (2011).

Show More Hide