Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

BMSA > Volume 18 > Quadratic B-Spline Galerkin Method for Numerical...
< Back to Volume

Quadratic B-Spline Galerkin Method for Numerical Solutions of Fractional Telegraph Equations

Full Text PDF

Abstract:

In this study, the authors employed the quadratic B-spline Galerkin method to solve time fractional order telegraph equations. Three model problems are consideredto implement the method. L2, L error norms and numerical results have been presented in tables. Absolute error graphics for all the exact and numerical solutionshave been given

Info:

Periodical:
Bulletin of Mathematical Sciences and Applications (Volume 18)
Pages:
23-39
Citation:
O. Tasbozan and A. Esen, "Quadratic B-Spline Galerkin Method for Numerical Solutions of Fractional Telegraph Equations", Bulletin of Mathematical Sciences and Applications, Vol. 18, pp. 23-39, 2017
Online since:
May 2017
Export:
Distribution:
References:

[1] L. Wei et al., Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation, Calcolo. 51 (2014) 175-192.

DOI: https://doi.org/10.1007/s10092-013-0084-6

[2] V.R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem. 38 (2014) 31-39.

[3] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, (2006).

[4] I. Podlubny, Fractional differential equations, Academic Press, San Diego, (1999).

[5] A. Esen, O. Tasbozan, An approach to time fractional gas dynamics equation: Quadratic B-spline Galerkin method, Applied Mathematics and Computation. 261 (2015) 330-336.

DOI: https://doi.org/10.1016/j.amc.2015.03.126

[6] A. Esen et al., A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal. 18 (2013) 260-273.

DOI: https://doi.org/10.3846/13926292.2013.783884

[7] K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differantial equations, J. Wiley-Sons, Canada, (1993).

[8] K.B. Oldham, J. Spainer, The fractional calculus, Academic Press, New York, (1974).

[9] J.A.T. Machado et al., Some applications of fractional calculus in engineering, Math. Probl. Eng. Volume 2010 (2010) Article ID 639801.

[10] O. Tasbozan et al., A numerical solution to fractional diffusion equation for force-free case, Abstr. Appl. Anal. Volume 2013 (2013) Article ID 187383.

DOI: https://doi.org/10.1155/2013/187383

[11] A. Esen, O. Tasbozan, Numerical solution of time fractional Burgers equation by cubic B-spline finite elements, Mediterranean Journal of Mathematics. 13(3) (2016) 1325-1337.

DOI: https://doi.org/10.1007/s00009-015-0555-x

[12] S. Momani, Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Applied Mathematics and Computation. 177 (2006) 488-494.

DOI: https://doi.org/10.1016/j.amc.2005.11.025

[13] Y. Molliq, M. Noorani, I. Hashim, Variational iteration method for fractional heat-and wave-like equations, Nonlinear Analysis: Real World Applications. 10(3) (2009) 1854-1869.

DOI: https://doi.org/10.1016/j.nonrwa.2008.02.026

[14] Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett. 21 (2008) 194-199.

DOI: https://doi.org/10.1016/j.aml.2007.02.022

[15] Q. Wang, Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton. Fract. 35 (2008) 843-850.

DOI: https://doi.org/10.1016/j.chaos.2006.05.074

[16] A. Kurt, Y. Çenesiz, O. Tasbozan, On the solution of Burgers equation with the new fractional derivative, Open Physics. 13 (2015) 355-360.

DOI: https://doi.org/10.1515/phys-2015-0045

[17] A. Kurt, O. Tasbozan, Approximate analytical solution of the time fractional Whitham-BroerKaup equation using the homotopy analysis method, International Journal of Pure and Applied Mathematics. 98 (2015) 503-510.

DOI: https://doi.org/10.12732/ijpam.v98i4.9

[18] S.B. Yuste, L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42 (2005) 1862-1874.

DOI: https://doi.org/10.1137/030602666

[19] N. Otteson, H. Pettorson, Introduction to the finite element method, Prentice Hall International (UK) Ltd., (1992).

[20] D.L. Logan, A first course in the finite element method (Fourth Edition), Thomson, (2007).

[21] P.M. Prenter, Splines and variational methods, New York, John Wiley, (1975).

Show More Hide
Cited By:
This article has no citations.